Statistical Framework for Ambient Monitoring Program Scope of Phase I

Variables Total P

TN, TKN, NH3N

Secchi Chl-a

Stations Lake Epil, Lake Hypol

Tributaries

Criteria Precision of Yearly Means

Precision of Long-Term Means

Power for Trend Detection

Design Features Sampling Frequency (# / year)

Replication

Sampling & Analytical Methods

Preliminary Review of Biological Monitoring Program

Refinement of Statistical Methods

Monitoring Program Design for Trend Detection

Null Hypothesis (H_o): No Trend

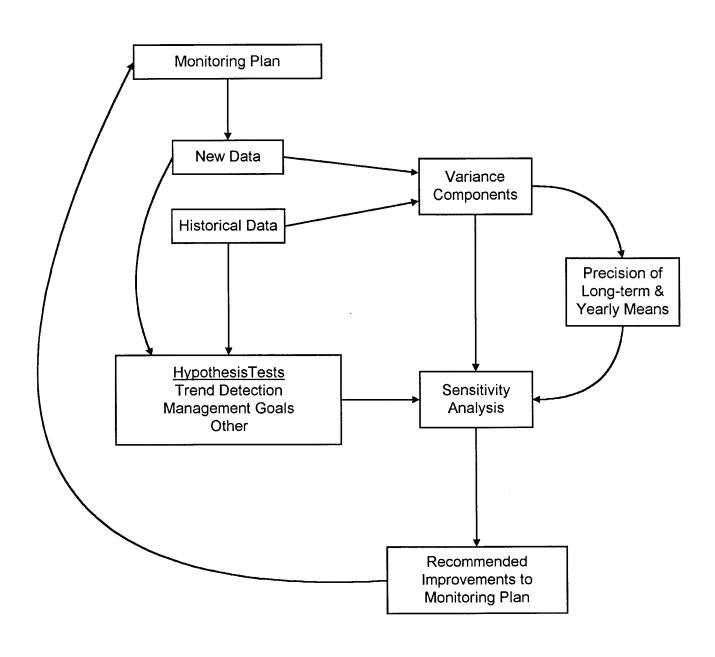
Outcome of Hypothesis Test:

Reality

Test Outcome	No Trend	Trend
H _o Accepted	Correct	Type II Error
		max prob. = β
H _o Rejected	Type I Error	Correct
	max prob. = α	

"Significance Level" = α , Pre-Selected

Maximum (β) = 1 - α


Power = Probability of Detecting Trend = 1 - β

= Function ("Trend Number" , α)

Trend Number ~ Magnitude of Trend x (Years of Monitoring) 1.5

Standard Deviation of Yearly Means

Statistical Framework for Ambient Monitoring Plan

Sampling Design Parameters:

 $n_y =$ number of years

n_d = number of sampling dates/year

 n_z = number of depths / replicates per date

Variance Component Model:

$$S_{\text{total}}^2 = S_{\text{year}}^2 + S_{\text{date}}^2 + S_{\text{depth}}^2$$

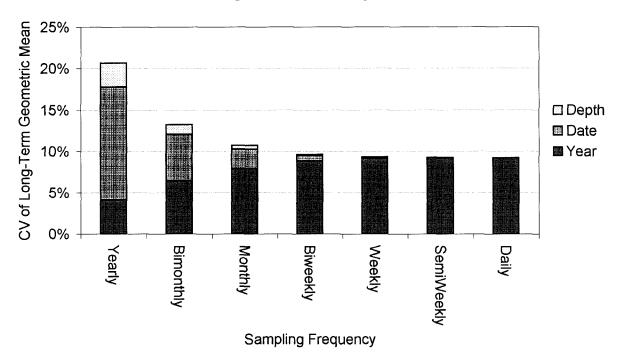
Variance of Mean for Individual Year:

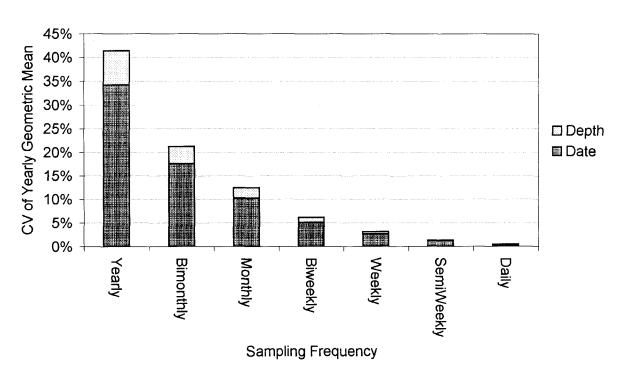
--> Precision of Yearly Mean

$$E_y^2 \sim S_{date}^2 / n_d + S_{depth}^2 / (n_d \times n_z)$$

Variance of Yearly Mean Time Series:

--> Power for Trend Detection

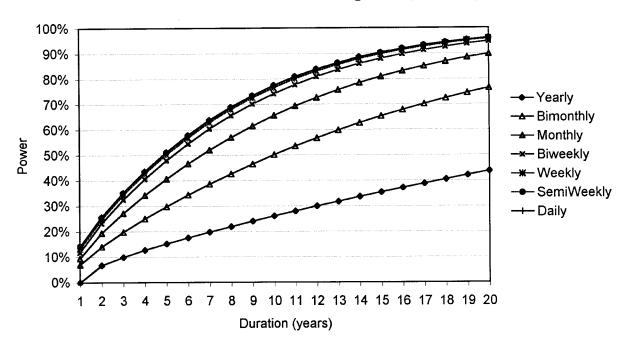

$$E_t^2 \sim S_{\text{year}}^2 + S_{\text{date}}^2 / n_d + S_{\text{depth}}^2 / (n_d \times n_z)$$


Variance of Long-Term Mean:

--> Precision of Long-Term Mean

$$E_{\mu}^{2} \sim S_{year}^{2} / n_{y} + S_{date}^{2} / (n_{d} x n_{y}) + S_{depth}^{2} / (n_{y} x n_{d} x n_{z})$$

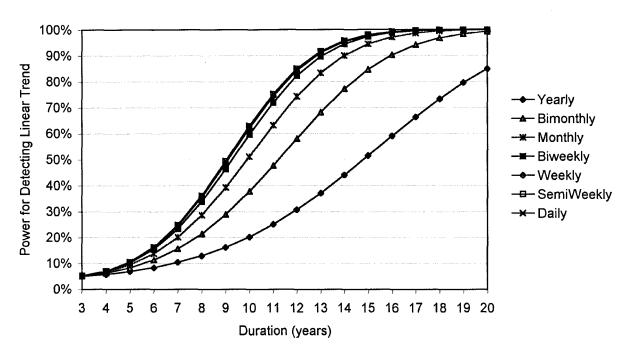
Precision in Long-term & Yearly Geometric Means



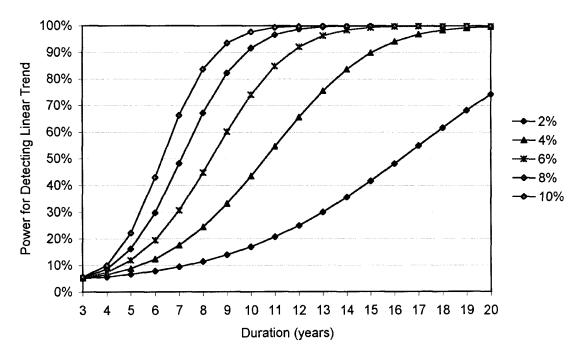
Shaded areas in each bar reflect percent of variance attributed to yearly, daily, or depth variation Variable: Total Inorganic P

Duration = 5 years

Power Curves for Detecting a Step Change



Sensitivity to Sampling Frequency
Step Change Magnitude = 25%
Duration = Number of Years of Monitoring Before & After Step Change



Sensitivity to Step Change Magnitude Sampling frequency = Biweekly

Power Curves for Detecting a Linear Trend

Sensitivity to Sampling Frequency Trend Magnitude = 5% /yr

Sensitivity to Trend Magnitude
Sampling Frequency = Biweekly

Statistical Framework for Ambient Monitoring Program Development of Phase II Scope

Additional Variables Likely to Influence Management Decisions

Bacteria

Free Ammonia

Turbidity

TOC, BOD

Dissolved Oxygen

Biological Measurements?

Phytoplankton

Zooplankton

Macroinvertebrates

Fish

Other?

Additional Monitoring Locations

Lake Nearshore

River

Additional Criteria

Frequency WQ Standards Exceeded

Other?