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Introduction

One of the primary purposes of the Ambient Monitoring Program is to provide
information for supporting future decisions on wastewater and watershed
management. Future decisions may be based in part upon changes detected in
Onondaga Lake and Seneca River over the next several years. Decisions may also
rely upon comparisons of monitored conditions with water quality standards or
management goals. The ability to detect such changes and the reliability of such
comparisons depends in part upon the design of the monitoring program.

Decisions should not be made based upon the monitoring results without an adequate
understanding of the sources and magnitudes of variability in the data.

This section describes and demonstrates a statistical framework (Figure 1) that is an
integral part of the monitoring program. The framework has been designed to
provide the following functions:

e identifying and quantifying sources of variability in the data;
e evaluating uncertainty associated with summary statistics;

e formulating and testing specific hypotheses; and

e refining monitoring program designs;

Continuous implementation of this framework over the course of the monitoring
program will help to ensure that data-collection efforts are cost-effective and that the
resulting data base is adequate to support future management decisions.

To some extent, elements of the framework are already in place under the existing
lake monitoring program. Similar statistical concepts and procedures were used in
evaluating of lake monitoring data collected through 1990 (Walker, 1991b). Routine
trend analyses have become a standard component of annual lake monitoring reports
(Stearns & Wheler, 1997). The framework is demonstrated below using data from the
historical lake monitoring program. Steps required to implement the framework are
also described. Methodologies will be refined and applied to key variables tracked



under the expanded monitoring effort described in the Ambient Monitoring Program,
including both water quality and biological measurements.

Type I and Type II Errors

Applications of monitoring data and statistical methods to address management
questions generally involves the following procedure:

Identify the management question;

Formulate a null hypothesis (Ho);

Identify an appropriate statistical procedure to test Ho

Apply procedure to estimate an outcome probability ‘p’, assuming that Ho is true;
Accept or reject Ho based upon the value of p relative to a pre-selected significance
level, o;

6. Interpret the test results, i.e., translate them back into language that can be
understood by decision-makers in the context of the question that has been asked;

NARR .

While the following discussion focuses on Steps 2-5, Steps 1 and 6 are also essential if
the effort is to be successful.

A typical management question is whether concentrations of a particular water quality
component “changed” over a specified time period. This is typically translated into a
null hypothesis that there is no “trend” in the data (i.e., that the long-term mean or
central tendency of the measurements has not changed). The Seasonal Kendall Test
(Hirsch et al., 1982; Hirsch & Slack, 1984) is a statistical method that is well-suited for
testing this hypothesis. The test estimates the probability “p” of observing a particular
set of data if the underlying central tendency of lake concentrations is stable. The
outcome probability is compared with a pre-selected “significance level” or “a”. If
p>a, then the null hypothesis is accepted. This does not “prove” that there is no trend
in the data; it merely indicates that any trend, if present, is too small to be detectable in
the presence of background variability over this tested time interval. If p<a, then the
null hypothesis is rejected. This indicates that a trend is “likely” with a “confidence

level” of 1-p.

The selection of a significance level (o) for the test is critical in this process.
Essentially, a represents the assumed maximum risk of falsely identifying a trend
(incorrectly rejecting the null hypothesis). This it termed a “Type 1” error (Snedocor
& Cochran, 1989) . Although a levels of .1, .05, and .01 are often used in scientific
investigations, the choice of a is ultimately subjective. Decision- makers relying on
test results may have different risk tolerances (Berryman et al., 1988) For this reason,
it is important to report the outcome probability p, so that decision-makers can form
their own conclusions depending on their own risk tolerances. This is more realistic
that just reporting a true/false outcome, which inappropriately conveys the notion
that there is no uncertainty in the conclusion.

The choice of a has important implications because it determines the maximum risk of
a “Type I1” error (failing to detect a real trend or incorrectly accepting the null



hypothesis). Possible test outcomes are illustrated in the following table (Lettenmaier,

1975,1976):
Reality
Test Outcome No Trend Exists Trend Exists
Ho Accepted Correct Type II Error
Trend Unlikely max. prob = =1-a
Ho Rejected Type I Error Correct
Trend Likely max. prob = a

The maximum risk of a Type | Error is selected when the choice of o is made. The
maximum risk of a Type Il error, often designated as “B”, is equal to 1 - a.. Selecting
lower levels of a will increase B and decrease the probability of detecting real trends in
the data, particularly small ones. As noted by Berryman et al. (1988), Type Il errors
(failing to detect real trends) may in fact be of more concern to resource managers and
decision-makers than Type | errors (false trends). The inverse relationship between 3
and a should be recognized in selecting an appropriate a level for use in testing
hypotheses.

A significance level of a=0.10 has been used routinely in Onondaga Lake and tributary
water quality data for trends (Walker, 1991b; Stearns & Wheler et al, 1997). This has
been used in the context of null hypotheses formulated without regard to trend
direction (two-tailed tests). These tests would be essentially identical to one-tailed
tests (designed to address questions like “is the lake improving”) conducted at a
significance level of 0.05. [t is proposed that a significance level of 0.10 be used
routinely in testing two-tailed hypotheses under the Ambient Monitoring Plan. As
discussed above, outcome probabilities (p), will also be routinely reported, so that
readers can interpret results according to their own risk tolerances.

As stated above, the maximum risk of a Type Il error (“B”) is equal to 1 - a.. This
maximum risk is encountered only when trend magnitudes are extremely small
and/or variance in the data is extremely high. The actual risk of Type Il error in the
context of a particular data set and test depends upon the following factors:

e magnitude of the trend or change to be detected
e duration or length of the data set

e variability in the data

e statistical methods employed

Trends are relatively easy to detect (low ), when the “signal-to-noise” ratio is high
(large trends, long data sets, low variability) and the best statistical methods are used.
Trends are relatively difficult to detect (high ), when the ratio is low (weak trends,
short data sets, high variability) and/or inappropriate statistical methods are used.
Statistical theory and simulation techniques can be used to quantify these



relationships (Lettenmaier, 1975, 1976; Hirsch et al., 1982; Loftis et al., 1989; Thas et
al., 1998).

Because they influence to some extent the amount of variability in the data,
monitoring program designs can influence Type Il error. In the context of designing
monitoring programs, its useful to consider the concept of “Power”, or the probability
of detecting a real trend (Lettenmaier, 1976). Numerically, power is equal to 1-B. A
“good” or “cost-effective” monitoring program is one that has the most power (lowest
risk of Type Il error) for a given investment.

Once the sources and magnitudes of variability in the data have been characterized,
relationships between power and monitoring program designs (sampling frequency,
etc.) can be investigated in the context of testing specific hypotheses. This, in turn,
provides a basis for evaluating and refining monitoring program designs and is a key
element of the statistical framework described below (Figure 1). Although discussed
above in the context of a trend analysis, the concepts apply to other types of
hypothesis tests.

Variance Component Analysis

Variance component models (Snedocor & Cochran, 1989) explicitly represent the
sources and magnitudes of variability in monitoring data. They provide a basis for
estimating the uncertainty associated with yearly and long-term summary statistics
and for estimating the power of trend tests or other hypothesis tests. The following
example (Walker, 1991b) illustrates the structure, calibration, and applications of such
models in evaluating monitoring program designs. Calculations are performed using
a version of LRSD.WKT1 ("Lake & Reservoir Sampling Design") spreadsheet (Walker,
1988a, 1988b), which incorporates procedures described by Smeltzer et al. (1989),
Knowlton et al. (1984), Walker (1980), Lettenmaier (1976), and Loftis et al. (1991).

A nested analysis of variance model can be used to describe concentration variations
in samples collected in the mixed surface layer of the lake:

Gk = pt+ yi + dy + oz
where,
Ciik = concentration measured in sample k collected on date j in year i
n = long-term mean
Vi = effect of year i (mean =0, standard deviation=-5;),i=1ton,
d;; = effect of date j in year i (mean = 0, standard deviation = S4), j=1tong
eijk = depth effect (mean = 0, standard deviation= S;), k=1 ton,

The samples are assumed to be taken from a homogenous stratum (e.g. surface mixed
layer).

The term p reflects the long-term mean concentration. This value cannot be directly
measured, but it can be estimated based upon data from a specific time interval.



Theoretically, p is independent of random variations (e.g., climate, hydrology,
seasons, sampling error) that can influence measured concentrations and that are
represented by the remaining terms in the equation. Management actions or other
anthropogenic factors may cause changes in p. A key objective of the monitoring
program is to provide data for detecting such changes in the presence of other sources
of variability. The monitoring data and variance component model can also be used
to estimate the probability of attaining lake-management goals expressed as annual or
long-term average concentrations.

The yearly term reflects random year-to-year variations in climate or other factors
influencing lake conditions (e.g., wet-year vs. dry-year variations). The sampling date
term reflects random variations from one sampling date to the next within a given
year. This term can be further partitioned into fixed seasonal effects and random
effects. The depth term reflects variations within the mixed layer at the sampling
station and variations associated with the measurement process (random sampling &
analytical error). Replicate sampling data can be used to partition the depth term into
“real” and measurement-related variations.

Assuming that the variance terms are independent, the total variance in the
measurement, S2, can be calculated from the following equation:

S = S o+ 8y + S
The terms of the equation represent yearly, daily, and depth variance components.

Basic elements of the monitoring program design are represented by the following
variables:

ny = number of years of monitoring
ng = number of sampling dates per year
n, = number of sampled depths per date

Calibration of the model involves estimation of parameters Sy, Sq, and S.. This can be
accomplished by applying a nested analysis of variance (Snedecor & Cochran, 1989) to
data derived from several years of monitoring. Fixed seasonal effects and long-term
trend are removed from the data prior to estimating variance components by
subtracting monthly medians (computed from all years) from each sample. Long-
term trend is removed by computing the median of the deseasoned values within each
year, regressing yearly medians against year, and applying the regression slope to the
year associated with each sample. The serial correlation of detrended, deseasoned,
daily-median values is also calculated for the purpose of estimating its effects on the

precision of yearly and long-term means (Loftis et al., 1991; Muskens & Kateman,
1978).

Because of skewness in the distributions of many lake measurements (nutrient
concentrations, algae, etc.), analyses are often conducted on log-transformed
concentration data, although the same methodology can be applied to un-transformed
data. When the analysis is performed on log-transformed data, results can be used to
estimate the long-term geometric mean (e").



The following parameter estimates are derived from log-transformed total inorganic
phosphorus data collected in Onondaga Lake between 1981 and 1990 (Walker, 1991b).
The data set is restricted to samples collected in the mixed layer between April and
September. Samples were collected biweekly from the mixed layer at depths of O, 3,
and 6 meters. The sampling program is characterized by the following

ny, = 10 (10 years of data)
ng = 13 (180 days per season / 14 days between sampling events)
n, = 3 (3 depths sampled on each date within the mixed layer)

Calibrated standard deviations are as follows:

S, = 0.206
Sa = 0377
S, = 0.300

According to the above equation, the total variance in the concentration data is given

by:

52 = %2, + 84 + 9

(0.206)2 + (0.377)2 + (0.300)2

0.042 +0.142 + 0.090 = 0.275

Results indicate that yearly, daily, and depth variations account for 15%, 52%, and
33% of the total concentration variance, respectively. Potential uses of the calibrated
model in evaluating monitoring program designs are described below.

Precision in Yearly and Long-Term Means

Monitoring objectives may include collection of data for estimating yearly-average or
long-term-average lake conditions. These statistics are potentially important because
they may be used to classify the water body according to trophic state, for example.
Management goals or standards may be expressed in terms of yearly or long-term
average conditions. The variance component model described above can be used to
estimate the uncertainty in yearly and long-term means calculated from the data. The
dependence of that uncertainty on sampling design parameters (ng, n.) can also be
examined.

According to the nested analysis of variance model (Snedocor & Cochran, 1989), the
following equations can be used to estimate the uncertainty associated with a yearly
mean or long-term mean calculated from a given set of data:

Ez = [S%/nga + 82,/ (nany)] F

Ey = S/ny + Ex /ny



where,

E; = standard error of the mean for year i

E, = standard error of long-term mean

F. = factor accounting for serial correlation between sampling dates

(Muskens & Kateman, 1978)

For the lake total inorganic phosphorus time series described above, the serial
correlation adjustment factor for a biweekly sampling frequency is computed at F, =
0.28. When the analysis is performed on logarithmic scales, uncertainty can be
expressed as a coefficient of variation or relative standard error (= standard error /
geometric mean) using the following equation:

CV(ew) =E,
where E, is computed using log-transformed data.

The above equations can be used to examine the sensitivity of uncertainty in yearly
means (E;) and long-term means (E,) to sampling frequencies, as represented by nq
and n,. Figure 2 shows relative standard errors of yearly and long-term means based
upon 5 years of growing-season data with assumed sampling frequencies ranging
from yearly (one sampling date per year) to daily. The shaded areas in each bar
indicate the relative contribution of each variance component to uncertainty in the
mean. The importance of daily and depth variations decrease substantially as
sampling frequency is increased from yearly to monthly. After that, the response is
relatively flat because uncertainty is controlled by year-to-year variations. The
analysis demonstrates that increasing the sampling frequency from biweekly to
weekly would provide little benefit in terms of reducing uncertainty in the long-term
geometric mean (CV =9.6% vs. 9.3%).

The CV of the annual geometric mean would decrease from 6.2% for biweekly
sampling to 3.1% for weekly sampling. This improvement relies heavily on variations
in the serial correlation adjustment factor (F;). Without the adjustment, sensitivity to
sampling frequency would be lower. Refinements to the statistical framework will
include further testing of the adjustment procedure. Although increasing the
sampling frequency from biweekly to weekly may improve the precision of yearly
geometric mean estimates, the CV’s for both sampling frequencies are relatively low.
Increasing the sampling frequency would be justified if a CV of 6.2% in the annual
geometric mean were determined to be unacceptable. This level of uncertainty is
substantially lower than relative standard errors characteristic of empirical
phosphorus mass-balance models (CV = 27%, Walker, 1985). The biweekly sampling
frequency seems adequate to support application of such models.

Once the variance components have been defined, theoretical equations or simulation
techniques can be used to estimate the uncertainty in any yearly or long-term-average
summary statistic (e.g., arithmetic mean, median, 90t percentile, exceedence
frequency, stream pollutant loads). Sensitivity to sampling frequency can be



evaluated in a manner similar to that demonstrated above. These results, in turn, can
be used as a basis for evaluating the adequacy of sampling frequency for any water
quality component.

Power for Detecting Step Changes in the Long-Term Mean

As discussed above, detection of changes in the long-term mean is a primary
monitoring objective. Variance component estimates can also be used to estimate the
probability of detecting changes in the long-term mean using data from different

monitoring periods. When a t-test (Montgomery & Loftis, 1987) is used for this
purpose, the following equations are involved:

t = (mi-my)/ En
Ein = (B2a + E20)12
dof = ny + nyp - 2

Null Hypothesis: pi = po, accepted if |t| < a

where,

my = measured mean in period 1

mp = measured mean in period 2

En = standard error of difference in long-term means between period 1 and 2
dof = degrees of freedom

o = significance level (two-tailed test)

todot = value of student’s t at significance level a and dof degrees of freedom

The power or probability of detecting an actual change in the mean (u: - p2 ) can be
estimated from the following equations (Lettenmaier, 1976):

Ne = |m-m|/Se
Power = F(Ni- tydor, dof)

where,

I\ dimensionless trend number

F = cumulative distribution of Student’s t with dof degrees of freedom



Power = probability of detecting change
probability that t will exceed the critical value t,,dof

Generally, the probability of detecting a change in the long-term mean increases with
the magnitude of the change (| w1 - p2 |) and decreases with the magnitude of the
standard error term (Eq1»).

Figure 3 plots power for detecting a 25% change in total inorganic phosphorus as a
function of duration (number of monitoring years before and after the step change)
and sampling frequency (ranging from yearly to daily) for a two-tailed t-test
conducted at a significance level a=0.1. Power increases substantially as the sampling
frequency increases from yearly to biweekly. Further increases in sampling frequency
would provide little benefit. This reflects the fact that uncertainty in the mean within
each period is controlled by the yearly variance component when the sampling
frequency is biweekly (Figure 2).

Figure 3 also shows power as a function of duration for step changes ranging from
10% to 80% and a biweekly sampling frequency. For durations ranging from 1 to 20
years, power for detecting a 10% change ranges from ~10 to ~40%. This demonstrates
the difficulty of detecting small changes in the long-term mean, even with a daily
sampling regime. Step changes >50%, however, are detectable with >90% probability
for durations of 5 years or longer.

Lettenmaier (1976) and Loftis et al (1989) show that power dependence on the “trend
number” is similar when non-parametric procedures are used for detecting changes in
the mean or median. With ideal data sets (normally distributed, serially
independent), non-parametric methods have slightly less power than the t-test. The
value of the non-parametric methods is that they are more robust to outliers and
deviations from normality (Helsel & Hirsch, 1988). The power of a t-test decreases
significantly (relative to that shown in Figure 3) when the data are skewed or contain
outliers. For this reason, non-parametric methods, such as the Wilcoxon rank-sum
test (Snedecor & Cochran, 1989) are generally preferred in water quality applications.
Because the ‘“trend number’ is also a good power predictor for nonparametric tests,
dependence on sampling frequency is not likely to be substantially different from that
depicted in Figure 3. Once variance components have been estimated, simulation
methods can be used to test power dependence on sampling frequency for any
parametric or non-parametric procedure used in testing hypotheses.

Power for Detecting Linear Trends
Similar equations have been developed to estimate power for detecting linear trends in
the long-term mean. When a regression analysis of yearly means is used to test for
trend, the dimensionless trend number can be calculated from (Lettenmaier, 1976;
Loftis et al., 1989):

N = blny (D) (n+D)]% / [12% o]

dof = ny-2
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Power = F [ N;- tydor, dof]

where,

b = trend magnitude (concentration units / year)

c = standard deviation of yearly means in absence of trend
ny = number of years tested

Using the variance component model, the standard deviation of yearly means can be
calculated from:

o2 = S2, + [ S/ na + 8%/ (nany)] F

The effects of monitoring frequencies (nq, n,) on power for detecting trends are
reflected in these equations. Essentially, the dimensionless trend number represents a
signal-to-noise ratio. The probability of detecting a trend increases with magnitude of
the trend (b), increases with the number of years examined (ny), and decreases with
the standard deviation of the yearly means (o).

Figure 4 plots power for detecting a 5% /yr trend in total inorganic phosphorus as a
function of monitoring duration and sampling frequency when the tests are conducted
at significance level a=0.1. Power increases substantially as the sampling frequency
increases from yearly to biweekly. Further increases in sampling frequency would
provide little benefit. For a biweekly frequency, power exceeds ~60% for durations
of 10 years or longer.

Figure 4 also shows power as a function of duration for trend magnitudes ranging
from 2% to 10% /year and a biweekly sampling frequency. For durations ranging
from 1 to 20 years, power for detecting a 2% / year trend ranges from ~5% to ~75%.
For a 10% / year trend, power exceeds 90% for durations of ~8 years or longer. This
demonstrates the importance of maintaining long-term data sets for trend detection

As discussed above for step changes, non-parametric methods are generally preferred
over linear regression in analyzing water quality data for trends because their power
is less sensitive to outliers and deviations from normality (Helsel & Hirsch, 1992).

The Seasonal Kendall test will be used in analyzing data from the Ambient Monitoring
Program. Simulations performed by Hirsch et al. (1982), Loftis et al (1989) and Thas
et al. (1998) indicate that the power of this test is also correlated with the “trend
number’, as defined above. Thus, it is expected that dependence on sampling
frequency is similar to that depicted in Figure 4. This hypothesis will be tested by
simulation.

Role of Modeling

Figures 2-4 demonstrate that, with a biweekly sampling frequency, power for
detecting changes or trends in total inorganic phosphorus concentration is controlled
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largely by the random year-to-year variance component. Increasing sampling
frequency would not increase power for trend detection. Power can be potentially
increased, however, by constructing models that “explain “ a portion of the year-to-
year variability (Hirsch et al., 1982; Walker, 1991a,1998). For example, a portion of
year-to-year variability may be related to wet-year vs. dry-year influences. Such a
relationship might be reflected by correlating yearly variations with precipitation or
watershed runoff. If the correlation explained 50% of the year-to-year variations, the
power for detecting a 5% / year trend with 10 years of data would increase from ~60%
to ~83%. Similarly, variance in bacteria levels might be reduced by correlating
measured values with antecedent rainfall.

The above concept applies to models with various degrees of complexity (simple
regressions to complex simulations). At some point, investment in modeling becomes
more cost-effective than investment in additional data collection if the objective is to
increase precision in the long-term means or to increase power for detection of trends.
While development of such models will not occur within the statistical frameworlk, it
is a potential recommendation. Relevant models that become available as the
monitoring plan is implemented will be factored into the trend analyses.

Implementation
Implementation of the framework (Figure 1) involves the following tasks:

1) Compilation & validation of recent water quality data (1991-1997)
2) Refinement and testing of statistical methods
3) Estimation of variance components for water quality and biological variables
4) Estimation of uncertainty in yearly and long-term means
5) Formulation of hypotheses
a) Long-term trends
b) Comparisons with management goals
¢) Other
6) Hypothesis testing
7) Evaluation of power of hypothesis tests as a function of sampling frequency
8) Recommendation of improvements to the monitoring program design

Existing long-term data sets (required to estimate variance components) will provide a
basis for initial implementation of the framework. Implementation will occur in two
phases.

The first phase will include the following variables measured in the Lake and
tributaries: total phosphorus, nitrogen (total, Kjeldahl, and ammonia N), chlorophyll-
a, and transparency. The monitoring program design will be evaluated based upon
criteria discussed above (uncertainty in yearly and long-term means, power for trend
detection).

The second phase will include other water quality measurements and preliminary
evaluations of biological measurements in the Lake, Tributaries, and Seneca River.
The water quality and biological measurements to be evaluated in the second phase
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will be limited to those variables that are likely to influence management decisions.
The Onondaga Lake Advisors Group will assist in identifying those measurements
and in developing specific hypotheses to be tested in the framework (aside from trend
detection). Once the second implementation phase is complete, it is anticipated that
the analysis will be refined and updated on an annual basis.

Biological measurements recently added to the monitoring plan will be brought into
the framework as sufficient data become available. While at least 5 years of data are
desired for estimating year-to-year variance components, preliminary evaluations of
within-year and sampling variations should be possible after the first year of data
collection. To the extent possible based upon available information, literature values
or sampling data from other locations can provide initial estimates of variance
components for biological measurements. These can be used in preliminary
evaluations of the monitoring plan and refined as site-specific data become available.
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Precision in Long-term & Yearly Geometric Means
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Duration = 5 years



Fig

Power Curves for Detecting a Step Change
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Figt

Power Curves for Detecting a Linear Trend
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