Calibration and Testing of a Eutrophication Analysis Procedure for Vermont Lakes

Final Report

prepared for

Vermont Agency of Environmental Conservation Water Quality Division Montpelier, Vermont

by

William W. Walker, Jr., Ph.D. Environmental Engineer 1127 Lowell Road Concord, Massachusetts 01742

January 1982

Calibration and Testing of a Eutrophication Analysis Procedure for Vermont Lakes

TABLE OF CONTENTS

INTRODUCTION		1
DATA BASE		1
CALIBRATION		2
TESTING		8
CONCLUSIONS	· .	14

REFERENCES

APPENDICES

A - Lake Data Base

B - Summary of Key Models Used in LEAP

C - LEAP Program Subroutine

D - Inputs and Outputs by Lake

E - Charts of Observed and Predicted Lake Responses and Discussions

F - Plots of Phosphorus and Chlorophyll Residuals

INTRODUCTION

The Lake Eutrophication Analysis Procedure (LEAP) is a system which can be used for predicting lake trophic status and related water quality conditions, given certain land use, morphometric, and hydrologic information (Walker, 1979,82). Control pathways are indicated in Figure 1. Regional calibration and testing of the framework are required prior to application in a planning context. A previous report (Walker, 1981) summarized data on 15 lakes to be used in calibrating the framework for use in Vermont. This provided opportunities for the AEC to review the data base and to suggest any corrections or refinements, particularly with respect to land use information. Preliminary testing was also conducted to identify needs for modification or recalibration of the existing models. Results indicated that the system could be improved by modifying it to account for: (1) differences in phosphorus export between watersheds with sedimentary and glacial till soils; and (2) effects of internal phosphorus loading (recycling) on the lake phosphorus balance and productivity.

In subsequent work, the model structure has been modified to account for the above factors. The data base has also been refined, based upon AEC feedback. This report presents the modified data base, describes the structure and calibration of the refined framework, and tests the methodology using data from three additional lakes which were not employed in calibration.

DATA BASE

Table 1 lists the lakes used for model calibration and testing. The range of spring total phoshorus values is 6 to 113 mg/m3, which reflects a wide range of trophic status from oligotrophic to highly eutrophic. The three lakes selected for model testing (Halls, Shadow, and Sunset) are at the lower end of the range of spring phosphorus values, although measurements of other trophic state indicators (chlorophyll, transparency, and oxygen depletion) suggest that the productivity of Halls is well within the range of the calibration lakes

Table 1 Lakes Included in Study

		۰.		Spring	
		Hydrologic	River	Total P	
Lake	County	Unit	Basin	(mg/m3)	Symbol*
میں سے میں میں میں اور	Model (Calibration	Lakes		و الم محمد محمد الم الم الم
Bomoseen	Rutland	02010001	Poultney	15	Во
Carmi	Franklin	02010007	Pike	20	Ca
Cedar	Addison	02010002	Lewis	. 17	Ce
Curtis	Washington	02010003	Winooski	12	Cu
Elmore	Lamoille	02010005	Lamoille	12	E 1
Fairfield	Franklin	02010007	Missisquoj	20	Fa
Harveys	Caledonia	01080103	Stevens	14	Ηv
Hortonia	Rutland	02010001	Poultney	12	Ho
Iroquois	Chittenden	02010003	LaPlatte	30	Ir
Morey	Orange	01080104	Connect.	27	Mo
Parker	Orleans	01110000	Barton	15	Pa
St Catherines	Rutland	02010001	Poultney	12	\$C
Shelburne	Chittenden	02010003	Winooski	113	Sh
Star	Rutland	02010002	Otter	14	St
Winona	Addison	02010002	Lewis	26	Wi
	Model	Testing La	kes	مه ال مر حمَّ فين ابن من من من م	- <u></u>
Halls	Orange	01080104	Connect.	10	На
Shadow	Orleans	01110000	Barton	6	Sh
Sunset	Rutland	02010001	Poultney	6	Su

* Symbol used to identify lakes in plots

(see Appendix A). The two-character symbols listed in Table 1 are used on subsequent plots.

Appendix A contains a compilation of land use, water quality, morphometric, and other data used in model calibration and testing. As. described in the previous report, three separate sets of land use estimates have been provided for each lake by the AEC: (1) based upon Landsat, (2) based upon regional planning maps, and (3) a "best" set, based upon AEC review of (1), (2), aerial photos, and knowledge of the watersheds. In many cases, there are wide variances between estimates (1) and (2). Landsat estimates are more recent, but generally do not pick up low-density residential areas. Many planning maps are outdated, do not reflect decreasing trends in agriculture, and may use various alternative definitions for land use categories. The "best" estimates have been used in calibration and testing. To provide indications of the sensitivity to land use estimates, the framework has been applied to each set of estimates for each lake. In some cases, the feasibility of applying the framework may be significantly limited by the accuracy of the land use estimates. Direct estimation of land uses from recent aerial photos should be considered for future applications.

Hydrologic data are important LEAP inputs. Average annual streamflows are required for estimating lake phosphorus loading and hydraulic residence time. Since none of the study lakes are directly gauged, regional streamflow estimates must be used. Table 2 contains a compilation of average streamflow data from 31 USGS gauges in Vermont. By matching hydrologic unit codes, the table can be used to estimate a runoff rate (meters/yr) for any lake in the state. The averages in the table are derived from the period of record at each gauge. Future updating of the table to include only the last ten years of record would be advisable, in order to factor out any effects of recent trends in land use and/or climate.

CALIBRATION

Some of the LEAP submodels may be influenced by regional factors which are not directly accounted for in the framework. The effects of

Table 2Summary of Average Streamflow Data from USGS Gauges in Vermont

· .	.,	Drainage	e	Period	Mean
	Hydrologic	Area	Flow	of	Runoff
River	Unit	km2	m3/sec	Record	m/yr
	Lake Memphre	magog Ba	asin		
black north	01010000	316	5.69	29	.57
clyde	01010000	368	7.31	61	.63
	Connecticut B	tiver Ba	sin		
connecticut	01080101	6848	133.00	31	.61
wells	01080103	254.9	3,97	40	.49
east orange br	01080103	23.1	8 .44	22	.60
ompompanoosuc	01080103	337	5.47	40	.51
mink	01080104	11.9	1.21	18	. 56
ayers	01080105	79	1.31	40	.52
white	01080105	1790	33.45	65	• 59
black	01080106	409	8.21	51	.63
ottauquechee	01080106	572	11.21	50	.62
williams	01080107	267	4.90	40	.58
saxtons	01080107	187	3.40	40	.57
west	01080107	798	17.84	56	•71
	Lake Champla	in Basi	n		
poultney	02010001	484	7.05	52	.46
otter	02010002	795	15.60	52.	.62
otter	02010002	1627	27.81	64	.54
jail branch	02010003	100.8	1.54	50	.48
winooski no br	02010003	179.2	3.80	47	•67
winooski	02010003	1028	16.60	61	.51
winooski	02010003	2704	48.00	52	.56
dog	02010003	197.1	3.46	46	.55
mad	02010003	360	7.22	52	.63
little	02010003	287	6.74	45	.74
lamoille	02010005	803	15.09	54	. 59
lamoille	02010005	1777	34.81	51	.62
missisquoi	02010007	339	7.65	49	.71
missisquoi	02010007	1241	26.11	64	.66
batten kill	02020003	394	9.63	52	.77
wallomsac	02020003	287	6,29	49	.69

these factors can be offset by empirically adjusting the appropriate coefficients so that estimated water quality conditions match the observed values in the calibration lakes. The potential need for calibration is the price that must be paid for using empirical models. More complex, theoretical models may have more generality but are difficult to implement because of demanding input data requirements. Because each of the LEAP submodels has been developed and calibrated using a much larger lake or watershed data base than used in this study, re-structuring or re-calibration should be done with caution and supported, where possible, with independent evidence.

In preliminary testing (Walker, 1981), the original system was found to under-predict phosphorus concentrations in lakes with watersheds with soils of sedimentary (vs. glacial) origin, including Shelburne (75% sedimentary), Winona (50%), and Fairfield (15%). The system has been modified to include the following land use categories:

	Land Use	Soil Origin	Nominal Export Concentration (mg-P/m3)
(1) (2) (3) (4) (5) (7)	undeveloped undeveloped untilled agric. untilled agric. tilled agric. tilled agric. urban	glacial sedimentary glacial sedimentary glacial sedimentary all	15 45 30 90 57 171 137

Export concentrations for sedimentary areas are assumed to be three times those for glacial areas, within a given land use category. The export concentrations for glacial watersheds were originally calibrated to data from 116 watersheds in the Northeast (Meta Systems, 1978). The need for recalibration is consistent with previous findings that export from forested and agricultural lands are two to five times greater in unglaciated areas of the Midwest, as compared with the Northeast (Meta Systems, 1978). Dillon and Kirchner (1975) found that mean export values from sedimentary watersheds were higher by about a factor of 2.5. The effects of soil origin are attributed primarily to differences in drainage characteristics and soil phosphorus concentrations. For each soil type, the export concentration for untilled agriculture has been

set at twice the respective undeveloped value, as indicated by Likens (1974) for New York watersheds.

The original LEAP framework included the following model for phosphorus retention or trapping, based upon data from over 100 northern temperate lakes and reservoirs (Walker, 1977):

$$1-Rp = P/Pi = 1/(1 + .82 T^{45})$$

where,

Rp = phosphorus retention coefficient

P = lake spring phosphorus (mg/m3)

Pi = average inflow total phosphorus (mg/m3)

T = mean hydraulic residence time (years)

Some modifications may be required for Vermont lakes, since the model was originally calibrated using average annual outflow concentrations in place of spring values and was not tested for the potential effects of internal loading.

Preliminary testing (Walker, 1981) indicated that some of the lakes may be influenced by internal phosphorus supplies because prediction errors (residuals) were strongly correlated with the length hypolimnetic anaerobic period. Based upon additional studies using the refined data base, the following formulation has been selected for representing the apparent effects of oxygen depletion on internal phosphorus loading or recycling:

Pest = Pi /
$$(1 + .82 T^{.45})$$

Pobs/Pest = .7 exp(6 HODv Ah / As)

where,

Pest = spring P estimated from original retention function
Pobs = observed spring P (mg/m3)
HODv = volumetric oxygen depletion rate (g/m3-day)
Ah = hypolimnetic surface area (km2)
As = lake surface area (km2)

Figure 2 depicts the above relationship for the calibration lakes, using observed volumetric oxygen depletion rates. Figure 3 shows the same relationship, using HODv's which are estimated from the observed phosphorus values, mean depth, and mean hypolimnetic depth using the oxygen depletion submodel of LEAP (see Appendix B). In each case, inflow phosphorus values (Pi) have been estimated from the refined phosphorus export submodel described above.

HODy reflects the potential for the development of reducing conditions in the hypolimnion and subsequent release of phosphorus from bottom sediments. The fate of this released phosphorus is difficult to predict because of complexities in iron/phosphorus/sediment chemistry and vertical mixing. Observations from Lake Morey (to the right in Figures 2 and 3) indicate considerable hypolimnetic accumulations of phosphorus and that the amount of phosphorus released into the mixed layer at fall overturn is comparable to the estimated annual external loading (Walker, 1979). The ratio of hypolimnetic area to lake surface area is an important factor governing the transfer of phosphorus to and from hypolimnetic waters. For a given HODv, a lake with a higher Ah/As ratio would tend to have a greater potential for internal recycling. Since HODv increases with lake phosphorus concentration, the above formulation suggests a non-linear response to phosphorus loading which is explored in more detail below (see TESTING). Calculation of spring phosphorus concentration involves an iterative procedure which has been incorporated into the model subroutine. A mass balance constraint estimated spring P to be less than the inflow requiring the concentration has also been included, but implemented only in the case of one lake (Shelburne).

Figure 4 shows the calibration of the submodel for predicting summer maximum chlorophyll-a as a function of summer mean chlorophyll-a. The slope of the relationship (1.16) indicates that algal populations are somewhat more variable at higher mean chlorophyll levels. Note that for a given lake and year, the observed maximum value depends upon sampling frequency, i.e., weekly sampling will almost always detect a higher maximum than monthly sampling, though, on the average, the

Estimated HOD, AH / As (9/m3-day)

Figure 3

Table 7Summary of Model Error Statistics

Statistic	Spring P	g Mean Chl-a	Maxim Chl-a	m Secchi	Areal HOD	Vol HOD
N	18	16	16	16	12	12
Obs. Variance	.437	.872	1.080	.598	.186	1.086
Res Mean	.071	.147	.151	084	.120	.120
Res Std Dev	.257	•534	.592	.319	.303	.303
Res Mean Sq	.067	.288	.349	.102	.097	.097
Res Mean Sq*	.069	.176	.252	.100	.097	.097
t	1.172	1.101	1.020	-1.053	1.372	1.372
MAD	•19	.19	.28	.11	.16	.16
R-Squared	.85	.67	.6 8	.83	.48	.91
R-Squared*	.84	•80	.77	.83	.48	.91

all statistics on natural log scales

* excluding Star Lake

t = t-test for bias (none are significant at p<.10)
MAD = median absolute deviation (residual)</pre>

Observed Maximum Chlorophyll vs. Mean Chlorophyll

observed means will be equal. Use of the 95th percentile in place of the maximum would eliminate the dependence on sampling frequency, but would require additional raw data compilation and analysis. The maximum values predicted by the model in Figure 4 correspond to monitoring programs which are similar to those conducted in the calibration lakes.

The oxygen depletion submodel predicts areal and volumetric hypolimnetic oxygen depletion rates as functions of spring phosphorus, mean depth, and mean hypolimnetic depth (Walker, 1979). Since the original model was based upon summer phosphorus measurements, re-calibration seems appropriate. Figure 5 plots observed HODV's against HODV's estimated from observed spring phosphorus. Observed values average 85% of those predicted. This adjustment has been added to the oxygen depletion submodel.

Morphometric characteristics of the hypolimnion (thermocline depth, surface area, mean depth) are important input variables which may not be available in some applications. A series of submodels to permit estimation of these characteristics as a function of lake maximum depth, mean depth, and surface area has been incorportated into the model are described in Appendix B. If the input subroutine. These thermocline depth is zero, the lake is assumed to be unstratified and all morphometric and oxygen depletion calculations are bypassed. If the input thermocline depth is less than zero, the value is assumed to be missing and the morphometric variables are estimated. If the estimated thermocline depth is greater than the maximum depth, the lake is assumed to be unstratified. Measured morphometric values can be input directly and have been used exclusively in the model testing conducted below.

The flexibility for using different coefficients to represent the chlorophyll/transparency relationship for each lake has been included (Appendix B). The intercept may vary with color or non-algal suspended solids concentrations. The slope may vary with algal type and distribution, although a constant value (.025 m2/mg) has been assumed for model testing purposes. Observed chlorophyll and transparency data could be used to estimate separate coefficients for each lake, although caution should be exercised. Some lakes have metalimnetic algal

populations (Harveys, Morey, and probably St Catherines) and most of the chlorophyll is located below the Secchi depth. In these lakes, observed transparency will tend to be greater than predicted. Use of surface grab samples for chlorophyll (as opposed to depth-integrated sampling to twice the Secchi depth) would provide better data from calibrating the relationship, though LEAP has been calibrated to predict depth-integrated chlorophyll values. Nonalgal light extinction is dominant in some lakes (such as Elmore) and would make it difficult to estimate the slope parameter.

The key relationships included in the calibrated system are summarized in Appendix B. Appendix C lists the computer program used for implementing the model, in the form of a BASIC subroutine appropriate for use with the generalized modelling software provided previously. Table 3 lists lake-specific input variables required for implementation of the model framework. Table 4 summarizes the model parameters, i.e., the input values which are held constant across lakes. Model output variables are listed in Table 5.

The distinction between the variables in Tables 3 and 4 reflect data availability and model generality. As more variables are included in the former, the model becomes more difficult to implement because of increasing lake-specific data requirements. On the other hand, as fewer variables are included in the former, the generality of the model and parameter estimates are stressed and the risk of prediction error increases. The variables included in Table 4 have been held constant for model testing purposes, though some or all could be varied from lake-to-lake in future applications, depending upon data availability (e.g., chlorophyll-secchi relationships, measured septic system loadings, etc.).

It is difficult to compare direct measurements of total phosphorus loading with those predicted by the framework because of the effort, expense, and variability associated with the former and because the predicted loadings are probably better defined as "available" phosphorus than as total phosphorus estimates. The calibration factor in the phosphorus retention function (.7) may reflect a consistent bias in the

Lake-Specific Model Input Variables

Var	ia	ь	1e	
	_	-	_	

Units Notes

	فالنابي ويهتم وعدوم ويقت والتابية المتحاك الأكا		
1	Undev Non-Sedimentary	acres	undeveloped, glacial soils
2	Undev Sedimentary	acres	undeveloped, lake plain soils
3	Untilled Non-Sedimentar	y acres	untilled agriculture
- 4	Untilled Sedimentary	acres	· · ·
5	Tilled Non-Sedimentary	acres	tilled agriculture
6	Tilled Sedimentary	acres	
7	Urban Area	acres	all urban land uses, soil types
8	Lake Surface Area	acres	
9	Upstr Lake Ret. Factor	acres	(a)
10	Mean Depth	n	
11	Basin Mean Depth	m.	mean depth of hypolimnetic basin (a)
12	Maximum Depth	. m	
13	Thermocline Depth	D	unstratified if = 0, unknown if < 0
14	Hypolimnion Depth	m	optional (c)
15	Hypol. Surface Area	acres	optional (c)
16	Annual Runoff	m/vr	regional streamflow. see Table (2)
17	Shoreline Septic Use	cat/vr	est, from residence and resort data
18	Extra P Load	kg/vr	optional add. P load = 0 for testing
19	Ch1/Secchi Intercent	1/m	nominal value .08 1/m
20	Obe Spring P	me/m3	optional observed data (* 0 if missing)
21	Obe Mean Chlma	mg/m3	n
22	Obe Mean Chine	mg/m3	
22	Obe Seechi Deebh	<u>т</u> б\тЭ	н
23	Obe NOD	四 ~/~2~1~~	
24		g/mz-day	and weat
20	Dumany		not used

(a) accounts for P retention by upstream lakes, see Appendix B

- (b) equals mean depth, except in lakes with large shallow bays (Hortonis, Bomoseen), see Walker, 1981
- (c) optional input values, estimated from other morphometric variables if input as zero and thermocline depth less than maximum depth

Variable	Units	Mean	S.D.	Notes
26 Inflow Conc of Upst L.	mg/m3	15	3	(a),(b)
27 Septic P Factor	kg/cap-y	.05	.01	(a)
28 Spring DO	g/m3	12	. 1	(a)
29 Undev Non-Sedimen P	mg/m3	15	3	phosphorus export conc
30 Undev Sedimentary P	ng/m3	45	9	n in
31 Untilled Non-Sedimen P	ng/m3	30	6	_ II
32 Untilled Sedimentary P	mg/m3	90	18	TI III
33 Tilled Non-Sedimen P	mg/m3	57	6.3	50
34 Tilled Sedimentary P	ng/n3	171	· · 19	17
35 Urban P	mg/m3	139	31	1 1
36 Atmos P Load	kg/km2-y	r 20	10	atmospheric loading
37 Internal Load Parameter	r —	6	0	(c)
38 Ch1/Secchi Slope	m2/mg	.025	0	(a)
39 M Error - Watershed		1	.30	model error variable(d)
40 M Error - P Retention	• 🗕	1	.20	. F F
41 M Error - Mean Ch1-a/P	:=	1	.30	1
42 M Error - Max Chl/Mean	Ch1 -	1	.10	11
43 M Error - Secchi/Chl-a	-	1	.20	. 19
44 M Error - HOD/P		1.	.20	17

Model Input Variables Constant Across Lakes

- (a) parameters which could be adjusted from lake to lake, given adequate data; for example, the chlorophyll/secchi slope (28) could be calibrated separately for each lake, based upon observed chlorophyll and transparency data
- (b) average inflow P concentration of upstream lakes, which are assumed to have undeveloped watersheds, since most are in remote areas; adjust upward if upstream lakes have developed and/or sedimentary watersheds (not the case in those used for calibration and testing)
- (c) parameter used in computing internal phosphorus load; set equal to zero to eliminate internal load; use 8.0 for alternative internal loading function (see TESTING)
- (d) model error terms have not been calibrated

Model Output Variables

Variable

Units Notes

			المتحافظ فالمتحاد والمتقاد والمرشا والمحاد والمتحد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد
1	External P Load	kg/yr	total external load (2-6)
2	Undeveloped P Load	kg/yr	adjusted for upstream lake effect
· 3	Agricultural P Load	kg/yr	input from tilled+untilled land uses
- 4	Urban P Load	kg/yr	input from urban land uses
- 5	Atmospheric P Load	kg/yr	direct atmospheric input
6	Septic P Load	kg/yr	input from shoreline residences *
7	Net Internal P Load	kg/yr	estimated from P retention model
- 8	Inflow P Concentration	mg/m3	external P load/annual discharge
- 9	Overflow Rate	m/yr	annual discharge/lake area
10	Hydraulic Residence Tim	e yr	lake volume/annual discharge
11	1 - P Retention Coef.	-	estimated from equation (27 App, B
12	P Spring	mg/m3	spring phosphorus concentration
13	Chlorophyll-a	mg/m3	mean, estimated from Spring P
14	Max. Chlorophyll-a	mg/m3	estimated from mean Chl-a
15	Secchi Depth	m	estimated from mean Chl-a
16	Areal HOD	g/m2-day	estimated from Spring P and mean depth
17	Hypolimnetic Depth	m	input, or estimated from other variables
18	Hypolimnetic Area	acres	" (see Table 3)
19	Thermocline Depth	血	estimated if input value < 0
20	Volumetric HOD	g/m3-day	est. from HOD and Hypolimnetic Depth
21	Days of Oxygen Supply	days	est. from HOD, Spring DO, and Hyp. Depth
22	Trophic State Disc. Sco	re -	Walker (1977), based upon EPA/NES data
23	Prob(Eutrophic)	-	probability of eutrophic classification
24	Prob(Mesotrophic)	-	probability of mesotrophic class.
25	Prob(Oligotrophic)	-	probability of oligotrophic class.
26	Error - P Spring	-	log(observed/predicted), base e
27	Error - Chl-a	-	. 11
28	Error - Chl Max	· –	11
29	Error - Secchi	-	17
30	Error - HOD	-	11
_			

* also includes other direct loading (input variable 18)

export concentrations, as well as bias in the lake model. The net effect of this coefficient, however, is an unbiased estimate of lake concentration, which is of direct concern.

TESTING

The calibrated version of LEAP has been tested using the following procedures:

- (1) plotting and statistical analysis of observed and predicted water quality conditions
- (2) plotting of residuals (errors) to test for association with various lake and watershed characteristics
- (3) interpretation of outliers

The above procedures have been implemented using an expanded data set which includes eighteen lakes, three of which were not used in calibration. Appendix D lists model inputs and outputs, using the "best" set of land use values for each study lake. Appendix E presents charts of observed and predicted conditions, indicating year-to-year variability in observed lake water quality in relation to the prediction variability induced by alternative sets of land use estimates. Appendix E also presents a brief discussion of the model fit for each lake. Phosphorus and Chlorophyll residuals are plotted in Appendix F.

Observed and predicted water quality conditions are listed in Table 6 and plotted in Figures 6-11. Residual histograms are presented in Figure 12. Since both the measurements and the predictions tend to be log-normally distributed, residuals are expressed as the natural logarithm of the ratio of observed to predicted response. In the limit of small errors, this is equal to the fraction error, i.e., a residual of +.1 indicates that the observed response exceeds the predicted response by 10%. One consequence of this transformation is that the error significance is somewhat inflated for oligotrophic lakes, where the measured levels are lower and the potential effects of analytical errors are higher on a percentage basis.

Table 7 summarizes the results of statistical analyses of the observations and residuals. The model framework explains 85% of the

Observations, Predictions and Residuals

· · · · · · · · · · · · · · · · · · ·				N		
lake	e-ch1x	chlmax	r-chlx	e-pspr	pspr	T-DSDT
Bomoseen	9.315	14.832	0.465	10.783	14.834	0.319
Carmi	16.719	64.992	1.358	18,612	19.959	0.070
Cedar	13.019	. – .		14.737	17.129	0.150
Curtis	12.929	11.500	-0.117	14.642	12.154	-0.186
Elmore	10.403	8.454	-0.207	: 11.954	12,477	0.043
Fairfield	20,924	21.647	0.034	22.947	19.967	-0.139
Harveys	6.656	7.155	0.072	7.880	13.842	0.563
Hortonia	8,314	6.000	-0.326	9.698	11.668	0.185
Iroquois	28.397	36.742	0.258	30.512	29.720	-0.026
Morey	14.941	20.456	0.314	16.758	27.073	0.480
Parker	17.277	15.684	-0.097	19.190	15.330	-0.225
St Cather	9.612	4.400	-0.781	11.104	11.755	0.057
Shelburne	77.666	140.712	0.594	78.027	112.607	0.367
Star	9.744	37.229	1.340	11.246	13.719	0.199
Winona	24.279	-	· –	26.362	25.938	-0.016
Halls	12.881	12.800	-0.006	14.592	10.100	-0.368
Shadow	6.169	7.389	0.181	7.340	5.578	-0.275
Sunset	4.659	2.411	-0.659	5.649	6.117	0.080
hold						
<i></i>						
• •				1		
lake	e-secch1	secchi	r-secchi	e-cni	CDIA 5 070	T-chi
Bomoseen	5.070	4.636	-0.089	4.089	5.3/3	0.130
Carmi	3.625	1.839	-0.679	6 200	21.790	1.023
Gedar	4.215	2 200	-	6 252	£ 200	0 000
Curtis .	4.232	3.800	-0.108	5 144	6.300	-0.201
Limore Reinfield	3.038	3.234	0.062	0.527	4.224	-0.201
Fairifeid	5.140	2.672	-0.090	3 402	2 569	0.072
Hartopia	5 372	6.034	0.107	5.432	3.500	-0.144
Troquois	2+2/3	4.74/	-0.007	12 466	10 511	-0.144
Morey	2.000	2.0JJ 6 710	0.105	7 008	0 516	-0.1/1
Derkor	J.004- 3 550	4./17	0.064	9.050	9.JIO 6 211	-0.253
St Cathor	J.JJZ 6 997	2.193	0.000	6.004	3 194	-0.201
Sholburno	4,70/	0.204	0.24/	4.020	3.104 75 76/	-0.413
Stervarue	1.200	0.400	-0.300	4 979	10 776	1 400
olar Vinone	1.41/	V.049	-0.300	10 644	17.//4	1.400
wille Valle	2.094	2 000	-0 110	10+000	6 500	0 042
Chadam	4.241	3.000	-0.110	3 247	3 974	0 152
Supert	0,100	7.019	0.120	2+401 2 554	1 472	0.120
Junset	/ +4/1	y .490	0.439	· 2.))4	T.4/3	-0.550

ho ld

Table 6 (continued)

an an an an an an an an				1	
lake	e-hod	hod	e-vhod	vhod	r-hod
Bomoseen	0.324	0.380	0.090	0.106	0.160
Carmi	0.294	0.238	0.312	0.253	-0.209
Cedar	0.000		0.000	·	-
Curtis	0.000	·	0.000	-	· <u> </u>
Elmore	0.000	-	0.000	· · 🗕 ·	· · ·
Fairfield	0.517	0.450	0.182	0.158	-0.139
Harveys	0.235	0.426	0.014	0.026	0.594
Hortonia	0.275	0.410	0.076	0.113	0.398
Iroquois	0.511	0.587	0.222	0.255	0.139
Morey	0.437	0.506	0.219	0.253	0.146
Parker	0.460	0.400	0.151	0.131	-0.140
St Cather	0.344	0.405	0.063	0.075	0.163
Shelburne	0.514	—	0.367	. 🗕	. –
Star	0.000	. ++-	0.000	-	
Winona	0.000		0.000	-	-
Halls	0.204	0.180	0.157	0.138	-0.123
Shadow	0.220	0.427	0.014	0.027	0.662
Sunset	0.172	0.140	0.012	0.010	-0.207

.

Observed vs. Estimated Mean Chlorophyll-a

Figure 7

.

Observed vs. Estimated Maximum Chlorophyl1-a

18 ₁ 1

histogra		f	
1.60	•		
1.40			
1.20	Ca	St	
1.00			
0.80			
0.60			
0.40	Bo	Sh	
0.20	Ir	Mo	
-0.00	Fa	Ηv	Sw
-0.20	Cu	Pa	Ha
-0.40	E1	Но	
-0.60			
-0.80	SC	Su	
-1.00			
-1.20			

0.80

0.60

0.40

-0.40 St

-0.80 Ca

-1.00 Sh

-0.60

-1.20

0.20 SC Su

-0.00 El Hv Ir Mo Pa Sw

-0.20 Bo Cu Fa Ho Ha

-chlx

Figure 12

Histograms of Model Residuals

0.60

0.40

-0.80

-1.00

-1.20

0.20 Mo

-0.20 Ho Ir

-0.40 El Pa

-0.60 SC Su

-0.00 Bo Cu Fa Hv Ha Sw

histogram of	-pspr	histogram of	-hod
1.60 1.40 1.20 1.00 0.80 0.60 0.40 Hy Mo 0.20 Bo Sh -0.00 Ca Ce -0.20 Cu Fa -0.40 Pa Ha -0.60 -0.80	El Ho SC St Su Ir Wi Sw	histogram of 1.60 1.40 1.20 1.00 0.80 0.60 Sw 0.40 Hy 0.20 Ho -0.00 Bo Ir Mo -0.20 Fa Pa Ha -0.40 Ca Su -0.60 -0.80	-hod SC
-1.00 -1.20 histogram of	-chl	-1.00 -1.20 histogram of	-secchi
1.40 1.20 St 1.00 Ca		1.60 1.40 1.20 1.00	· ·
v.ov 5n		A /AA	

variance in the observed spring phosphorus values and between 48% and 91% in the other lake response measurements. The relatively low R-Squared for areal HOD (48%) is attributed to the relatively low variance in the observed HOD values (.186 vs. .437-1.086 for the other variables). The volumetric HOD has a high R-Squared (91%) and is of greater significance than the areal HOD because it is more directly related to variations in hypolimnetic oxygen concentrations.

Mean squared residuals range from .067 for total phosphorus to .349 for maximum chlorophyll-a. The corresponds to a range of .26 to .59 in standard error. Median absolute errors, less sensitive to the individual outliers discussed below, range from .11 for transparency to .28 for maximum chlorophyll-a. Transparency is generally the easiest variable to predict in an empirical modelling framework (Walker, 1981b), because it has a limited range and appears to be a fairly robust measurement. Fortunately, it is also the most significant to users of recreational lakes. Maximum chlorophyll errors are expected to be greater because they are more subject to sampling variability than are the mean response variables, i.e., the seasonal maximum concentration estimated from a limited number of samples is less statistically reliable than the seasonal mean.

Appendix E contains a discussion and interpretation of the fit for each lake. As discussed for Star Lake, the chlorophyll/phosphorus relationship used in LEAP may not be appropriate for extremely shallow (mean depth 1.5 meters) and/or rapidly flushed lakes, so a second set of error statistics excluding Star has been added to Table 7.

Examination of Figures 7-9 reveals that the summer algal densities may be somewhat more sensitive to spring phosphorus than is represented in the model framework. There is a tendancy for observed values to be lower than predicted on left sides of these plots and higher than predicted on the right sides. The key relationship responsible for this is the spring phosphorus/ mean summer chlorophyll-a model, which has been taken from the Vermont classification survey report (VAEC, 1980):

B = .5 P.94

where,

B = mean summer chlorophyll (mg/m3)
P = spring phosphorus (mg/m3)

As shown in Figure 13, this relationship was derived from a larger data base of 40 Vermont lakes, including 13 of the lakes studied here. Using a steeper function (say, .21 in place of .5 and 1.21 in place of .94) would eliminate the patterns apparent in Figures 7-9. Based upon Figure 13, however, the above modification may not be appropriate for other Vermont lakes, depending upon confidence in the data from the lakes not studied here. If indicated by future analyses of other lake data, the function could be easily modified in the program subroutine.

Appendix F contains plots of phosphorus and chlorophyll residuals against various lake and watershed characteristics. These have been produced and reviewed in order to identify any significant trends or patterns which may indicate possibilities for reducing prediction error by incorporating additional factors into the framework. The individual lake characteristics (as discussed in Appendix E) should be considered in interpreting the residual plots. As discussed above, modification of the phosphorus/chlorophyll relationship could improve some of the over-predictions (Shelburne, Carmi, Morey) chlorophy11 and under-predictions (Shadow, St Catherines). These potential changes be considered in reviewing Appendix F. should also Plots and relationships seeming worthy of comment are discussed below.

Plots of phosphorus residuals against forest type variables (fraction conifer, hardwood, and mixed) indicate that conifer forests may have a somewhat lower export concentration than the 15 mg/m3 assumed for undeveloped land. The three lakes with the most negative residuals (Halls, Shadow, and Parker) all have greater than 45% coniferous forests. Harvey's Lake, however, has both a high percentage of coniferous forest and a positive residual, which might be attributed to the effects of South Peacham Brook, as discussed in Appendix E, or to some other unique feature of the lake. This effect may be related to a lower cycling phosphorus via needle-fall (vs. leaf-fall) in conifer forests and/or to the fact that conifer forests tend to be located in

1.5

well-drained soils (which have lower runoff potential). Corresponding effects of coniferous forests on chlorophyll residuals are not indicated, however.

Phosphorus and chlorophyll residuals may be positively correlated with the ratio of wetland area to total drainage area. This is more evident if the responses of Morey, Harveys, and Star are interpreted independently of wetlands (see discussions in Appendix E). While it is possible that wetlands could export more phosphorus than forested areas, the effect could also be explained by the tendancy for wetlands to export organic color which interferes with phosphorus and chlorophyll measurements (Carlson and Shapiro, 1981). The effect is also difficult to distinguish from the possible coniferous forest effect discussed above, since the watersheds with higher percentages of coniferous forests would tend to have lower precentages of wetlands and better drainage.

The factors discussed above have maximum effects of +/- 20% and could be easily incorporated into the model framework by including additional watershed categories. Since both the forest type and the wetlands effects are consistent with a general effect of soil drainage properties, the potentials for using hydrologic soil group as an additional independent variable could also be investigated. This would involve augmenting the data base to characterize each watershed in a matrix of hydrologic soil group vs. land use. The soils information is readily available, but would have to be overlayed on land use maps. While the existing framework appears to be adequate for explaining most of the lake-to-lake variations in phosphorus, chlorophyll, transparency, and oxygen depletion, the potential for improving the watershed model using an expanded data base should be considered in the future.

The modification of the phosphorus retention function to account for the effects of hypolimnetic oxygen depletion on internal phosphorus cycling has not been severely tested because the lakes in the testing data set are relatively unproductive and do not have the internal loading potential of Morey, Iroquois, Carmi, or Shelburne. Data from other mesotrophic or eutrophic, stratified lakes would provide a better

basis for testing the formulation. As a result of work by the Connecticut Agricultural Experiment Station (Norvell et al., 1979), there is a good data set on land use, lake morphometry, and lake water quality for 33 Connecticut lakes. This data set would be particularly useful as a basis for further testing.

One important feature of the model is that it indicates a nonlinear response of lake phoshorus levels to external loading. Table 8 summarizes the results of sensitivity and error analysis calculations for predicted spring phoshorus levels. Note that both the sensitivity coefficients and the error variances are much higher for lakes with higher internal loading potential. Some of this high sensitivity results from the somewhat arbitary selection of an exponential function to fit the data in Figure 2.

Figure 14 plots the estimated spring P level as a function of total external loading for a hypothetical lake with the same morphometric and hydrologic characteristics as Lake Iroquois. The curve is concave upwards, in contrast to the linear relationship (constant retention coefficient) more generally assumed in lake models. The nonlinearity of the model also increases with loading, as shown by the sensitivity coefficients (percent increase in spring P for a 1% increase in external loading) plotted in Figure 14. At low loadings, oxygen depletion is of little consequence and the sensitivity coefficient is near one. The sensitivity coefficient increases with loading, especially as the loading approaches about 230 kg/yr, where the coefficient exceeds five. One unfortunate consequence of this sensitivity is that it magnifies the effects loading estimates and lake morphometric of errors in characteristics. At a sensitivity coefficient of 5, for example, the variance in the predicted lake concentration is 25 times the variance of This is an undesirable characteristic if the the loading estimate. framework is to be used to provide robust assessments of lake conditions, given uncertain watershed and morphometric information.

The dramatic increase in sensitivity reflects the use of the exponential function in the phosphorus retention function:

	Table 6							
Estimated	Lake	Sensitivities	to	External	Phosphorus	Loading		

Lake	Observed Spring P	Observed HODv	HODv x Ah/Ae	External Load Sensitivity*	CV(P)
Bomoseen	15	.11	.044	1.27	.44
Carmi	20	.25	.073	2.05	.71
Cedar	17	0	0	1.00	.34
Curtis	12	0	0	1.00	.35
Elmore	12	0	0	1.00	.36
Fairfield	20	.16	.084	2.24	.80
Harveys	14	.026	.019	1.06	.37
Hortonia	12	11	.027	1.12	.39
Iroquois	30	. 26	.138	3.25	1.19
Morey	27	.25	.136	3.07	1.09
Parker	15	.13	.073	1.92	•70
St Catherines	12	.075	.043	1.26	.42
Shelburne	112	-		1.00	. 40
Star	14	0	0	1.00	.35
Winona	26	0	0	1.00	.36
Halls	10	.095	.044	1.46	,49
Shadow	6	.027	.026	1.08	.39
Sunset	- 6 -	.010	.008	1.06	.38

* percent increase in lake spring phosphorus for a 1 percent increase in external phosphorus loading, estimated from LEAP first-order sensitivity analysis procedure

** coefficient of variation of spring total P estimate, estimated from LEAP error analysis procedure
Figure 14

Simulated Lake Responses to External P Loading

 $1-Rp = .7 \exp(6 \text{ HODv Ah/Ae}) / (1 + .82 \text{ T}^{.45})$

The following function also provides an adequate fit of the observed phosphorus retention data:

$$1-Rp = .7 (1 + 8 HODv Ah/Ae) / (1 + .82 T45)$$

The dashed lines in Figure 14 indicate that the predicted lake response is nearly identical to that derived from the above function, but the sensitivity coefficient is much more stable. Tests of this alternative function indicate that prediction errors for phosphorus and other lake response variables are not significantly different from the original formulation. The modified formulation has much better error stability and should probably be used in place of the exponential function, subject to further evaluations.

Because of the above problems with error stability, it has not been possible to calibrate or test the model error terms (input variables 39-44). Additional analysis would be required to achieve this. The LEAP sensitivity analysis procedure can still be used to estimate and compare the sensitivities of predictions to various input variables, but the predicted confidence ranges are not reliable. Until the error analysis terms can be properly calibrated, predicted confidence ranges should be calculated from the model error statistics in Table 7, with awareness that the confidence ranges are likely to be wider for lakes with higher internal loading potential. For spring phosphorus, the error statistics in Table 7 refer to the average of four to six years of data for each lake. Higher error variance would be expected for comparisons with data from individual years. A refined error analysis scheme could also be developed to account for the effects of year-to-year variability on the predicted confidence ranges and error statistics for individual lakes and years.

13

CONCLUSIONS

- (1) The calibrated LEAP framework is a potentially useful tool for managing Vermont lakes which can be implemented without excessive data requirements.
- (2) When predictions are compared with measurements made in 18 Vermont lakes, the prodecure explains 85%, 67%, 83%, and 91% of the variance in spring phosphorus, mean summer chlorophyll, mean transparency, and volumetric hypolimnetic oxygen depetion rate, respectively.
- (3) The model may under-predict chlorophyll levels in extremely shallow lakes (mean depth < 2 meters). Excluding data from one lake in this category (Star), the procedure explains 80% of the mean chlorophyll variance.
- (4) Median absolute prediction errors are 19%, 19%, 11%, and 16% for phosphorus, chlorophyll, transparency, and oxygen depletion, respectively. These errors are smaller than the year-to-year variability observed within lakes.
- (5) Reductions in chlorophyll and transparency error variance could be achieved by using a steeper chlorophyll/phosphorus relationship for these lakes. This potential modification should be further tested on data from other lakes.
- (6) Residuals analyses indicate that additional variance could be explained by modifying the framework to account for the effects of variations in forest types, wetlands, and/or soil drainage characteristics on phosphorus export.

- (7) The phosphorus retention function accounts for the effects of hypolimnetic oxygen depletion on phosphorus cycling within lakes and suggests a non-linear response of spring phosphorus levels to external loadings in stratified lakes. Additional testing of this function should be undertaken, using data from other lakes in Vermont or elsewhere in New England.
- (8) Owing to the extreme sensitivity of the retention function for some lakes, it has not been possible to calibrate the error analysis parameters used in LEAP. The calibration could be achieved through analysis of an expanded data set and slight modification of the retention function.
- (9) Routine measurements of summer phosphorus concentrations, in addition to spring phosphorus, summer chlorophyll, and summer transparency, would provide a better data base for assessing eutrophication in Vermont lakes, especially for those which have short hydraulic residence times and/or significant internal recycling of phosphorus.
- (10) Direct estimates of land uses from recent areal photos should be considered, in addition to Landsat and planning maps, as sources of watershed information for future implementations of LEAP.

REFERENCES

Carlson, R.E. and J. Shapiro, "Dissolved Humic substances: A Major Source of Error in Fluorometric Analyses Involving Lake Waters", <u>Limnology and Oceanography</u>, Vol. 26, No. 4, pp. 785-799, July 1981.

Dillon, P.J. and B. Kirchner, "The Effects of Geology and Land Use on the Export of Phosphorus from Watersheds", <u>Water Research</u>, Vol. 9, pp. 135-148, 1975.

Likens, G.E., "Water and Nutrient Budgets for Cayuga Lake, New York", Cornell University Water Resources and Marine Sciences Center, Technical Report No. 82, March 1974.

Meta Systems, Inc., "Land Use-Nutrient Export Relationships in the Northeast", in "A Preliminary Analysis of the Potential Impacts of Watershed Development on the Eutrophication of Lake Chamberlain", prepared for New Haven Water Company, Connecticut, June 1978.

Morse, J.W. and P.H. Flanders, "Primary Productivity Study of Three Vermont Lakes", Vermont Agency of Environmental Conservation, Department of Water Resources, Water Quality Surveillance Series No.2, 1971.

Norvell, W.A, C.R. Frink, and D.E. Hill, "Phosphorus in Connecticut Lakes Predicted by Land Use", <u>Proc. Natl. Acad. Sci. U.S.A.</u>, Vol. 76, No. 11, pp. 5426-5429, November 1979.

Vermont Agency of Environmental Conservation, "A Preliminary Investigation of the Water Quality Relationships in Lake Morey", Department of Water Resources, Water Quality Division, December 1979.

Vermont Agency of Environmental Conservation, "Vermont Lake Classification Survey", Department of Water Resources and Environmental Engineering, Water Quality Division, Montpelier, December 1980.

Vermont Agency of Environmental Conservation, "Harvey's Lake Diagnostic/ Feasibility Study", Interim Report, Department of Water Resources and Environmental Engineering, Water Quality Division, Montpelier, January 1981.

Walker, W.W., "Use of Hypolimnetic Oxygen Depletion Rate as a Trophic State Index for Lakes", <u>Water Resources Research</u>, Vol. 15, No. 6, pp. 1463-1470, December 1979.

Walker, W.W., "A Lake Eutrophication Analysis Procedure Applied to Lake Morey", prepared for the Vermont Department of Water Resources, Water Quality Division, Lakes Program, August 1980.

Walker, W.W., "A Sensitivity and Error Analysis Framework for Lake Eutrophication Modelling", <u>Water Resources Bulletin</u>, March 1982. Walker, W.W., "Calibration of LEAP to Vermont Lakes: Data Base Summary", prepared for Vermont Agency of Environmental Conservation, Water Quality Division, December 1981.

Walker, W.W., "Empirical Methods for Predicting Eutrophication in Impoundments: Phase II Model Testing", prepared for the Office of the Chief, Corps of Engineers, U.S. Army, Waterways Experiment Station, Vicksburg, Mississippi, draft, 1981b.

APPENDIX A

Lake Data Base

Lake Water Quality Data by Year

Lake	yr	pspr	chla	chlmax	secchi	hoda
Bomoseen	77	14				
Bomoseen	78	15	7.40	22.00	4.20	0.38
Bomoseen	79	19	4.40	10.00	5.00	0.38
Bomoseen	80	12	4.00	-	5.50	-
Bomoseen 🕚	-8 <u>1</u>	15	6,40	.—	4.00	-
Carmi	77	18	-	. –	-	0.21
Carmi	78	25	19.80	64.00	2.20	. –
Carmi	79	18	27.50	66.00	1.70	
Carmi	80	17	23.00	-	1.70	· -
Carmi	81	23	18.00	-	1.80	0.27
Cedar	77	21	-	-	-	-
Cedar	78	11	-	-	- ···	-
Cedar	79	19				-
Cedar	80	14	· –	- '	~	-
Cedar	-81	24	-	-	 `	-
Curtis	77	13	6.30	11.50	3.80	
Curtis	78	17	-	· 🗕	-	-
Curtis	79	10		-	-	
Curtis	80	8	-	-		-
Curtis	81	15	-		· 🗕	-
Elmore	77	10	3.87	8.40	3.30	-
Elmore	78	12.	2.99	7.60	3.30	-
Elmore	79	12	4.14	8.00	3.20	-
Elmore	80	14	5.20	10.00	2.90	-
Elmore	81	15	5.40	· _	3.50	-
Fairfield ·	78	17	6.70	14.20	4.30	+
Fairfield	79	17	14.90	33.00	2.23	
Fairfield	80	25	13.00	· •••	3.00	
Fairfield	81	22	9.20		2.30	0.45
Harveys	77	10	3.42	7.00	6.90	
Harveys	78	11	2.68	5.20	6.80	-
Harveys	79	14	3.40	8.00	6.10	0.39
Harveys	80	15	5.30	9.00	7.00	0.39
Harveys	81	22	3.50	-	6.50	0.51
Hortonia	77	-9	-	-	-	0.32
Hortonia	78	11			· <u> </u>	-
Hortonia	79	13	2.70	6.00	5.20	0.50
Hortonia	80	12	3.60	6.00	5.00	÷
Hortonia	81	14	5.10	-	4.60	0.43
Iroquois	77	41	9.40		2.60	-
Iroquois	78	25	12.16	54.00	2.50	0.51
Iroquois	79	26	9.90	25.00	2.60	0.63
Iroquois	80	30	8.10		3.70	
Tromoie	<u>81</u>	29	14.00	· _	2.10	0.63
rrodaora	UI		A 7 8 V V			

Lake Water Quality Data by Year (ct)

Lake	уr	pspr	chla	chlmax	secchi	hoda
Morey	75	- 26		1	6.00	
Morey	17	17	1	I		1
Morey	78	50	6.15	21 - 40	5.50	1
Morey	79	32	9.26	20.00	5.00	0.53
Morev	80	20	12.00	20.00	3 .30	0.46
Morey	81	48	12.00	1	4.30	0.53
Parker	11	14	4.73	12.30	3.70	∎.
Parker	78	10	ł		1	I
Parker	79	18	6.75	20.00	4.47	I
Parker	80	16	7.90	I ,	3.80	1
Parker	81	21	5.90	l	3.30	0.40
St Cather	77	10	t	Ì	1	1
St Cather	78	10	2.33	4.40	. 06. 1	1
St Cather	79	11	3.00	I	5.90	0.42
St Cather	80	12	3.00	1	6.60	1
St Cather	81	17	4.90	1	5.40	0.39
Shelburne	17	147	4	t	ľ	1
Shelburne	78	128	59.30	132.00	0.70	I
Shelburne	79	135	96.80	150.00	0.34	I
Shelburne	80	66	ŧ	ŀ	I.	1
Shelburne	81	72	1	I	I	I
Star	78	10	t	I	t	ł
Star	79	~	17.00	33.00	06.0	I
Star	80	22	23.00	42.00	0.80	1
Star	81	ង	F	8	1	1
Winona	17	4	ı	•	1	
Winona	28	22	ł	1	1	I
Winona	79	30	t	ŀ	I .	ı
Winons	80	29	I	ł	ı	1
Winona	81	เส	ł	I		ł
Halls	17	10	4.40	7.10	3.60	1
Halls	78	10	1	I	1	ł
Halls	79	ŝ	ł	1	3.60	1
Halls	8	φ	12.00	23 . 00	3.70	ຄ.0
Halls	81	ព	5.20	1	4.20	1
Shadow	1	•••	ł	1	I	I
Shadow	78	م	Ŧ	1	1	0.57
Shadow	79	4	4.70	9.10	7.30	1
Shadow	8	9	3.40	00 •9	6.40	0.57
Shadow	81	Ņ	3.50	ł	7.40	0.24
Sunset	78	4	1.40	2.90	9.60	0.13
Sunset	62	10	1.40	2.30	9.50	0.17
Sunset	83	ц С	1.50	2.10	9,90 0	0.13
Sunset	81	-	1.60	1	00*6	1

- 6 3
ſ۵,
ň
а.
5
æ
. 💏
H
- 14
Σ.
۰D
Ľ.
Ξ.
μ.
_
Q
9
ŰD.
ā.
Э
9
ŤΦ.
ص
5
-
P
÷
ake
ake
ake W
ake Wa
ake Wat
ake Wate
ake Water
ake Water
ake Water
ake Water Q
ake Water Qu
ake Water Qua
ake Water Qual
ake Water Qual:
ake Water Quali
ake Water Qualit
ake Water Quality
ake Water Quality
ake Water Quality \
ake Water Quality V.
ake Water Quality Va
ake Water Quality Var
ake Water Quality Vari
ake Water Quality Varis
ake Water Quality Varial
ake Water Quality Variab
ake Water Quality Variabl
ake Water Quality Variable
ake Water Quality Variables

lake	pspr	chla	chlmax	secchi	hoda
3omo seen	14.83	5.37	14.83	4.64	0.38
Jarmi	19.96	21.79	64.99	1.84	0.24
Jedar	17.13	1	1	ł	ł
Jurtis	12.15	6.30	11.50	3.80	ł
3]more	12.48	4.22	8.45	3.23	L
?airfield	19.97	10.45	21.65	2.85	0.45
larveys	13.84	3.57	7.15	6.65	0.43
lortonia	11.67	3.67	6.00	4.93	0.41
Lroquois	29.72	10.51	36.74	2.65	0.59
forey	27.07	9.52	20.46	4.72	0.51
arker	15.33	6.21	15.68	3.79	0.40
St Cather	11.75	3.18	4.40	6.38	0.40
Shelburne	112.61	75.76	140.71	0.49	ı
Star	13.72	19.77	37.23	0.85	ł
Vinona	25.94	1	1	₽ ⁻	ı
lalls	10.10	6.50	12.80	3.80	0.18
Shadow	5.58	3.82	7.39	7.02	0.43
dunset	6.12	1.47	2.41	9.49	0.14

Depth Variables *

lake	zmean	zbasin	XBWZ	ztherm	zhyp
Bomoseen	8.2	9.9	. 19.8	10.0	3.6
Carmi	5.4	5.4	10.1	8.0	6.0
Cedar	1.9	1.9	4.0	0.0	0.0
Curtis	ω ů	ۍ س	8.6	0.0	0.0
Elmore	а •5	د: د	5.2	0.0	0.0
Fairfield	7.2	7.2	12.8	8.0	2.8
Harveys	20.0	20.0	44.2	10.0	16.4
Hortonia	5 . 6	6 •8	18.3	11.0	3.6
Iroquois	5.8	5.8	11.3	7.5	2.3
Morey	8 . 3	8 . 3	13.1	0.0	2.0
Parker	7.6	7.6	14.7	8.0	3.1
St Cather	10.7	10.7	19.5	10.0	5.4
Shelburne	3.6	3 . 6	7.9	4.0	1.4
Star	1.5	1.5	2.4	0.0	0.0
Winona	1.0	1.0	2.7	0.0	0.0
Halls	5.0	5.0	9.2	7.0	1.3
Shadow	20.9	20.9	42.4	10.0	15.7
Sunset	18.6	18.6	36.0	8.0	14.5

* all depths in meters

Land Uses and Soil Types

	use: undev	eloped	until	led ag.	till	ed ag.	urban
lake	soil: ns	8	118	S	ns	S	s,ns
Bomoseen LS	5 19722	0	1072	0	236	0	236
Bomoseen Pl	M 18265	0	1566	0	646	0	1391
Bomoseen XX	t 17855	0	1474	0	614	. 0	1323
Carmi LS	3803	. 0	1606	0	925	.0	0
Carmi PM	3651	0	900	0	1962	0	131
Carmi XX	3626	0	1606	• 0	871	0	231
Cedar LS	427	0	113	0	98	0	0
Cedar PM	229	0	29	0	338	: 0	44
Cedar XX	360	0	133	0	115	0	30
Curtis LS	748	0	83 -	0	9	0	0
Curtis PM	420	0	74.	0 -	203	0	148
Curtis XX	492	0	248	0	27	0	73
Elmore LS	507.4	0	164	0	111	0	0
Elmore PM	3581	0	441	0	607	0	202
Elmore XX	4304	· 0	655	· 0	167	0	223
Fairfield 1	LS 2730	281	0	170	0	113	0
Fairfield I	PM 2586	211	0	98	- 0	270	232
Fairfield 3	XX 2495	291	0	170	0	113	225
Harveys LS	4652	0	312	0	54	0	0
Harveys PM	3590	0	451	0	715	0	153
Harveys XX	3852	0	914	0	155	0	97.
Hortonia L	5 3837	0	125	0	45	0	0
Hortonia Pl	M 3135	0	446	0	132	0	257
Hortonia XX	K 3481	. 0	214	0	89	· 0	223
Iroquois LS	5 1534 -	0	486	0	193	. 0	0
Iroquois Pl	M 1191	0	0	0	599	0	222
Iroquois X	K 1292	. 0	486	0	193	0	242
Morey LS	4461	0	51	0	51	0	0
Morey PM	4074	0	499	0	0	0	128
Morey XX	3925	0	459	0	51	0	128
Parker LS	4811	0	313	0	54	0	0
Parker PM	2219	0.	689	0	1998	0 .	102
Parker XX	2644	0	2101	0	325	0	108
St Cath LS	6237	0	210	0	74	0	74
St Cath PM	4819	0	444	0	962	0	370
St Cath XX	5119	0	880	0	298	0	298

units: acres

(contined)

Land Uses and Soil Types (ct)

	use:	under	veloped 🕤	unti	lled ag.	till	ied ag.	urban
lake	soil:	ns	8	11,8	8	n8	8	s,ns
					· .			
Shelburne	LS	86	1428	399	17 22	0	788	49
Shelburne	PM	359	1094	0	143	0	2569	143
Shelburne	XX	386	1679	0	1471	· 0	788	148
Star LS		620	0	11	0	7	. 0	14
Star PM		612	0	92	0	6	0	22
Star XX		544	0	82	0	6	0.	20
Winona LS		1021	872	0	333	0	77	26
Winona PM		890	522	0	484	0	170	50
Winona XX		993	569	0	579	0	134	54
Halls LS		443	0	17	0	11	0	6
Halls PM		493	0	0	0	22	0	123
Halls XX		393	0	50	0	6	· · 0	28
Shadow LS		3304	0	36	0	36	0	0
Shadow PM		2560	0	106	0	389	0	283
Shadow XX		2787	0	429	0	71	0	89
Sunset LS		949	Ó	36	0	12	0	0
Sunset PM		773	0	5	0	0	0	73
Sunset XX		893	• 0	32	0	12	0	60

units: acres

LS = Landsat Estimate PM = Planning Map Estimate XX = "Best" Estimate

Other Lake Variables

Lake	surface area acres	nypol. area - acres	Fu acres	runoff m/yr	Us cap/yr	a 1/m
Bomoseen	2363.79	988.00	3560.00	0.46	717.97	0.08
Carmi	1375.79	395.20	150.98	0.68	679.43	0.08
Cedar	113.62	0.00	0.00	0.58	61.50	0.08
Curtis	76.57	0.00	0.00	0.60	60.00	0.08
Elmore	224.77	0.00	190.97	0.60	313.68	0.20
Fairfield	464.36	247.00	0.00	0.68	150.00	0.08
Harveys	346.00	247.00	0.00	0.55	223.70	0.08
Hortonia	449.54	108.68	1237.82	0.46	348.00	0.08
Iroquois	205.01	111.15	0.00	060	196.50	0.08
Morey	538.46	288.99	0.00	0.56	382.80	0.08
Parker	239.59	133.38	62.99	0.60	156.00	0.08
St Cather	852.15	491.53	316.96	0.46	814.42	0.08
Shelburne	449.54	210.00	0.00	0.60	0.00	0.08
Star	56.81	0.00	0.00	0.58	12.00	0.,70
Winona	234.65	0.00	0.00	0.58	10.50	0.08
Halls	84.00	29.60	6.20	0.55	76.50	0.08
Shadow	199.00	187.00	573.00	0.60	183.00	0.08
Sunset	195.00	152.00	439.00	0.46	48.00	0.07

Fu = upstream lake P retention factor Us = shoreline septic system use a = secchi/chlorophyll intercept

Additional Morphometric and Watershed Data

lake	shoreline develop. ratio	drainage area acres	for	rest type hardwood	es 1 mixed	wetland fraction
Bomoseen	3.155	23630	0.123	0.691	0.186	.057
Carmi	1.531	7710	0.046	0.698	0.256	.077
Cedar	1.108	752	0.249	0.501	0.250	.037
Curtis	2.594	917	0.307	0.580	0.113	.010
Elmore	1.247	5574	0.341	0.582	0.077	.049
Fairfield	1.861	3758	0.129	0.776	0.095	.042
Harveys	1.387	5364	0.540	0.368	0.092	.052
Hortonia	2.644	4457	0.136	0.654	0.210	.048
Iroquois	1.610	2418	0.180	0.689	0.131	.055
Morey	1.463	5101	0.216	0.705	0.079	.004
Parker	1.383	5418	0.506	0.382	0.112	.016
St Cather	2.402	7 4 4 7	0.169	0.687	0.144	.022
Shelburne	1.552	4922	0.205	0.539	0.256	.132
Star	1.264	709	0.379	0.436	0.185	.031
Winona	1.201	2564	0.188	0.681	0.131	.143
Halls	1.790	561	0.510	0.340	0.160	.016
Shadow	1.320	3575	0.480	0.460	0.060	.039
Sunset	1.090	1192	0.200	0.560	0.240	.022

total drainage area for "best" land use estimates forest types = fractions of total forested area wetland fraction = wetland area/ total drainage area

APPENDIX B

		St	ibscri	ipts
Symbols	Variable	Unit In	put	Output
Ah	Hypolimnetic Area	km2	15	18
Ai	Watershed area for land use/soil t	type i km2 i	l-7	
As	Lake Surface Area	km2	8	
Awu	Watershed Area of Upstream Lake	km2		
Alu	Surface Area of Upstream Lake	<u>km2</u>		
В	Mean Chlorophyll-a	mg/m3		13
Bmax	Maximum Chlorophyll-a	mg/m3	•	14
Ci	Export concentration for wat. type	e 1 mg/m3 2	935	
Cu	Inflow concentration of upstream	lakes mg/m3	26	
DOsp	Spring Overturn D.O.	g/m3	28	
Fu	Upstream lake P retention factor	km2	9	
HODa	Areal HOD	g/m2-day	•	16
HODv	Volumetric HOD	g/m3-day		20
Ip	Trophic State Index			
La	Atmospheric P loading	kg/km2-yr	36	
Qr	Regional Runoff Rate	m/yr	16	
Qs	Surface Overflow Rate	æ/yr		9
Pi	Average Inflow Total P Conc.	mg/m3		8
Р	Lake Spring Phosphorus	mg/m3		12
Rp	P Retention Coefficient	-	•	11
Rseas	Number of Seasonal Shoreline Resid	dences -		
Rperm	Number of Permanent Shoreline Res	idences -		
s	Mean Secchi Depth	Ľ		15
Ť	Hydraulic Residence Time	yr		10
Tdo	Days of Oxygen Supply	days		21
Uday	Day Use of Resorts/Parks	cap-days/yr		
Unit	Overnight Use of Resorts/Parks	cap-days/yr		
Us .	Total Use of Shoreline Septic Syst	t. capita/yr	17	
Wi	Net Internal P Loading	kg/yr		7
Wo	Other Direct Loading	kg/yr	18	
Ws	Shoreline Septic Loading	kg/vr		6
Wax	Total External P Loading	kg/vr		1
Z	Mean Depth	m	10	
Zb	Basin Mean Depth		11	
Zh	Mean Hypolimnetic Depth	· <u>11</u>	14	17
Zt	Thermocline Depth		13	19
Zx	Maximum Depth	m	12	

Summary of Key Models Used in LEAP

Summary of Key Models Used in LEAP (continued)

 Total External Loading: mass balance, export concentrations estimated from EPA/NES watersheds in Northeast (Meta Systems, 1978); exports for sedimentary soils 3 x glacial

Wx = Qr Sum[Ai Ci] - Qr Fu Cu + Ws + Wo + As La

(Sum = sum over land use/soil types)

(2) Phosphorus loading from shoreline septic systems (Walker, 1981): mass balance, based upon use intensity

net P loading of .05 kg/capita-yr (input variable 27) corresponds to approx. 90% treatment efficiency at .5 kg/cap-yr input to systems under detergent ban

Ws = .05 Us

Us = 3 (.5 Rseas + Rperm) + (.5 Uday + Unit)/365

(assumes average of 3 people/shoreline residence)

(3) Phosphorus retention by upstream lakes and reservoirs (Walker, 1981): mass balance, using settling velocity model (12 m/yr)

 $Fu = Sum \left[12 Awu Alu / (12 Alu + Qr Awu) \right]$

(Sum = sum over all upstream lakes and reservoirs)

(4) Phosphorus Retention: Walker(1977), modified to account for internal loading and calibrated to study lakes (Fig. 2-3)

> .45 Fr = .7 / (1 + .82 T) Fi = exp [6 HODv Ah/As] , maximum 1/Fr 1 - Rp = Fr Fi Wi = Wx Fr (Fi - 1)

Summary of Key Models Used in LEAP (continued)

(5) Chlorophyll-a, Vermont AEC (1980):

.94 B = .5 P

(6) Max Chlorophyll-s, fit of data from study lakes (Fig. 4):

1.16 Bmax = 1.6 B

(7) Secchi Depth, Walker (1981b):

1/S = a + b B

a = .08 1/m (input var. 19) b = .025 m2/mg (input var. 38)

(8) Oxygen Depletion: Walker(1979), calibrated for Spring P:

 $Fm = -3.58 + 1.98 \log(Zb) \sim .38 [loge(Zb)]^{2}$ Ip = -15.6 + loge(P)

(Fm + .02 Ip) HODa = .85 10

(.85 = calibration factor for spring P/HOD relationship in Vermont lakes (see Figure 5))

HODv = HODa/Zh

Tdo = DOsp/HODv

Zh = Zb f

APPENDIX C

3500 'LEAP model subroutine January 1982 3505 'initialize constants..... 3510 F1=1/247 : convert acres to km2 3520 T2=1E-06 : convergence criterion for internal load 3523 Z9=-1 : missing value code for error calcs 3525 'end of initialization..... 3530 A1=X(1)+X(2)+X(3)+X(4)+X(5)+X(6)+X(7) : 'total watershed 3540 Y(2)=(X(1)*X(29)+X(2)*X(30)-X(9)*X(26))*F1*X(39)*X(16) : under p load. 3550 Y(3)=(X(3)*X(31)+X(4)*X(32)+X(5)*X(33)+X(6)*X(34))*F1*X(39)*X(16) : 'agric p 3560 Y(4)=X(39)*X(16)*X(7)*X(35)*F1 : urban p 3570 Y(5)=X(8)*X(36)*F1 :'atmos load 3580 Y(6)=X(17)*X(27)+X(18) : septic 3600 P1=0:V1=1 : initialize 3610 Y(9)=(A1+X(8))*X(16)/X(8) : overflow rate 3620 Y(10) = X(10) / Y(9):'residence time 3630 V2=.7/(1+.82*(Y(10)^.45)) 3630 V2=.7/(1+.82*(Y(10)^.45)) 3635 Y(1)=Y(2)+Y(3)+Y(4)+Y(5)+Y(6) : retention : total load 3640 Y(8)=Y(1)/((A1+X(8))*X(16)*P1) : inflow conc 3657 Y(11)=V1*V2 : internal load adjustment : p spring 3670 Y(12)=Y(11)*Y(8)*X(40) 3680 'hypolimnetic morphometry..... 3690 IF X(13) <>0 THEN 3704 3700 FOR J6=16 TO 21:Y(J6)=0:NEXT J6:GOTO 3880 : 'unstratified 3704 IF X(13)>0 THEN Y(19)=X(13):GOTO 3710 : 'use input thermocline $3705 Y(19)=5.17*((F1*X(8))^.077)*(X(12)^.164)$ 3706 TF Y(19)==X(12) THEN 3700 : estimate thermocline 3706 IF Y(19)>=X(12) THEN 3700 : check if stratified 3710 Z5=X(11):IF Z5>18 THEN Z5=LOG(18) ELSE Z5=LOG(Z5) 3712 25=-3.58+1.976*25-.3846*25*25 : morpho factor for hod 3740 IF X(14)>0 THEN Y(17)=X(14):GOTO 3770 3750 Y(17) = X(11) * (X(12) - Y(19)) / (X(12)): hypolimnetic depth 3770 IF X(15)>0 THEN Y(18)=X(15):GOTO 3794 3780 B1=.84*(X(12)/X(10)-1)3790 Y(18)=X(8)*((((X(12)-Y(19))/X(12))^B1)) : estimate hypol area 3791 'iteration to determine internal load..... : 'internal load adjustment 3792 Y(11)=V1*V2 3793 Y(12)=Y(11)*Y(8)*X(40) : p spring $3794 \ 23 = 15.6 + 20 \times LOG(Y(12))$: tsi 3796 Y(16)= X(44)*(10^(.0204*Z3+Z5))*.85 : 'hod 3800 Y(20)=Y(16)/Y(17): volumetric hod 3822 V1=EXP(X(37)*Y(20)*Y(18)/X(8)) : 'internal load param,X(37)=6 3823 rem V1=1+X(37)*Y(20)*Y(18)/X(8) : 'alternative, X(37)=8 3824 IF (V1*V2)>1 THEN V1=1/V2 3825 REM PRINT "iteration: pspring=";Y(12);" 1-rp=";Y(11): optional print 3850 T1=(Y(12)-P1)/Y(12): test for convergence 3860 IF ABS(T1)> T2 THEN P1=Y(12):GOTO 3792 :'iterate 3870 REM end of iteration 3875 Y(21)=X(28)*Y(17)/Y(16) : days of oxygen supply 3880 Y(13)=X(41)*.5*(Y(12)^.94) : chla 3890 Y(14)=1.6*X(42)*(Y(13)^1.14) : chla-max : secchi depth 3900 Y(15)=X(43)/(X(38)*Y(13)+X(19)) :'net internal load 3925 Y(7)=Y(1)*V2*(V1-1)

3926 'trophic state probabilities	
3927 P3=V1*Y(1)/(F1*X(8))	: areal load
3930 $Z3=Y(12)/X(40)$	Lawep/
$3940 Y(22) = 1E-03*(Z3^{3}.82)*(P3^{3}.18)$:'discriminant score
$3950 \ Z3 = -(Y(22)^{(25)})$	-
$3960 \ Y(23) = EXP(-18.51-20.49*Z3)$	
3970 Y(24) = EXP(-36.77-29.33*Z3)	
3980 Y(25) = EXP(-53.8-35.65*Z3)	·
$3990 \ Z3 = Y(23) + Y(24) + Y(25)$	
4000 Y(23) = Y(23)/Z3	: prob(eutrophic)
$4010 \ Y(24) = Y(24)/23$: prob(mesotrophic)
4020 Y(25) = Y(25)/Z3	: prob(oligotrophic)
4025 'prediction error statistics	
4030 FOR J6=1 TO 5	
4040 IF X(19+J6)<=0 THEN Y(25+J6)=Z9:GOTO 4060	:'set to missing if no obs.
4052 Y(25+J6)=LOG(X(19+J6)/Y(11+J6))	: log error
4060 NEXT J6	
4070 RETURN	

APPENDIX D

Model Inputs and Outputs by Lake

CAS	E: Bomoseen	
INI	Tot	MEAN
. 1 .	Undev Non-Sedim acres	17855.200
2	Undev Sedimentary acres	0.000
3	Untilled Non-Sedim acres	1474.000
4	Untilled Sedimentary acres	0.000
5	Tilled Non-Sedim acres	614.000
6	Tilled Sedimentary acres	0.000
7	Urban Area acres	1323.000
8	Lake Surface Area acres	2363.790
.9	Upstr Lake Ret Fac acres	3560,000
10	Mean Depth m	8.200
10	Basin Mean Depth m	9.900
12	Maximum Depth m	19.000
14	Hermocline Depth M	3 600
15	Nupol Surface Area acres	000 889
16	Rupot f m/vr	0 460
17	Charoline Sentic Nee can/wr	717 969
18	Extra P Load kg/yr	0.000
10	Chl/Secchi Intercent (1/m)	0.080
20	Obs Spring P mg/m3	14.834
21	Obs Mean $Chl = mg/m3$	5.373
22	Obs Max Chl-a mg/m3	14.832
23	Obs Secchi Depth m	4.636
24	Obs HOD $\sigma/m^2 - day$	0.380
002	IPUT	MEAN
1	External P Load kg/yr	1116.650
2	Undeveloped P Load kg/yr	399.340
3	Agricultural P Load kg/yr	147.532
4	Urban P Load kg/yr	342.480
5	Atmospheric P Load kg/yr	191.400
6	Septic P Load kg/yr	35.898
7	Net Internal P Load kg/yr	95.791
8	Inflow P Conc mg/m3	25.374
9	Overflow Rate m/yr	4.598
10	Residence Time yr	1.783
11	1 - P Retent Coef	0.425
12	P Spring mg/m3	10./83
13	Chlorophyll-a mg/m3	4.089
14	Max Uni-a mg/mb	5.313
15	Secchi Depth m Orugon Dopi Roto g/m2-dar	0 324
17	Uxygen Depi Aace g/m2-day	3,600
1.9	Hypol Depth m Hypol Area scree	988.000
10	Dave of 02 Supply	133.470
20	Volumetric HOD g/m3-day	0,090
21	P Regidence Time vrs	0.758
22	TS Discr Score	0.017
23	Prob(Eutrophic)	0.001
24	Prob(Mesotrophic)	0.398
25	Prob(Oligotrophic)	0.601
26	Error - P Spring	0.319
27	Error - Chl-a	0.136
28	Error - Chl Max	0.465
29	Error - Secchi	-0.089
30	Error - HOD	0.160

29 Error - Secchi 30 Error - HOD

CASE: Carmi

11 1 - P Retent Coef 12 P Spring mg/m3 18.612 13 Chlorophyll-a mg/m3 14 Max Ch1-a mg/m3 16.719 15 Secchi Depth m 16 Oxygen Depl Rate g/m2-day 17 Hypol Depth m 395.200 18 Hypol Area acres 38.431 19 Days of 02 Supply 20 Volumetric HOD g/m3-day 21 P Residence Time yrs 22 TS Discr Score 23 Prob(Eutrophic) 24 Prob(Mesotrophic) 25 Prob(Oligotrophic) 26 Error - P Spring 27 Error - Chl-a 28 Error - Chl Max 29 Error - Secchi -0.679 30 Error - HOD -0.209

7.833

3.625

0.294

0.940

0.312 0.872

0.029 0.031

0.812 0.156

0.070

1.023

1.358

CASE: Cedar

INI	PUT	MEAN
1	Undev Non-Sedim acres	360.380
2	Undev Sedimentary acres	0.000
3	Untilled Non-Sedim acres	133.000
4	Untilled Sedimentary acres	0.000
5	Tilled Non-Sedim acres	115.000
6	Tilled Sedimentary acres	0.000
- 7	Urban Area acres	30.000
8	Lake Surface Area acres	113.620
9	Upstr Lake Ret Fac acres	0.000
10	Mean Depth m	1.925
11	Basin Mean Depth m	1.925
12	Maximum Depth m	4.000
13	Thermocline Depth m	0.000
14	Hypolimnion Depth m	0.000
15	Hypol Surface Area acres	0.000
16	Runoff m/yr	0.580
17	Shoreline Septic Use cap/yr	61.500
18	Extra P Load kg/yr	0.000
19	Chl/Secchi Intercept (1/m)	0.080
20	Obs Spring P mg/m3	17.129
21	Obs Mean Ch1-a mg/m3	-1.000
22	Obs Max Chi-a mg/m3	-1.000
23	Obs Secchi Depth m	-1.000
24	Obs HOD g/m2-day	-1.000
0U'	rpu r	MEAN

1 External P Load kg/yr 59.522 2 Undeveloped P Load kg/yr 12.694 3 Agricultural P Load kg/yr 24.762 4 Urban P Load kg/yr 9.792 5 Atmospheric P Load kg/yr 9.200 6 Septic P Load kg/yr 3.075 7 Net Internal P Load kg/yr 0.000 8 Inflow P Conc mg/m3 33.708 9 Overflow Rate 3.839 m/yr 10 Residence Time yr 0.501 11 1 - P Retent Coef 0.437 14,737 12 P Spring mg/m3 6.290 13 Chlorophyll-a mg/m3 14 Max Chl-a mg/m3 13.019 4.215 15 Secchi Depth m g/m2~day 16 Oxygen Depl Rate 0.000 0.000 17 Hypol Depth m 0.000 18 Hypol Area acres 19 Days of O2 Supply 0.000 20 Volumetric HOD g/m3-day 0.000 21 P Residence Time yrs 0.219 22 TS Discr Score 0.022 23 Prob(Eutrophic) 0.006 0.638 24 Prob(Mesotrophic) 25 Prob(Oligotrophic) 0.357 26 Error - P Spring 0.150 27 Error - Ch1-a -1.00028 Error - Chl Max -1.000-1.000 29 Error - Secchi -1.000

30 Error - HOD

CASE: Curtis

INPUT 1 Undev Non-Sedim acres 492.430 2 Under Sedimentary acres 3 Untilled Non-Sedim acres 248.000 4 Untilled Sedimentary acres 5 Tilled Non-Sedim acres 27.000 6 Tilled Sedimentary acres 7 Urban Area acres 73.000 8 Lake Surface Area acres 76.570 9 Upstr Lake Ret Fac acres 10 Mean Depth m 11 Basin Mean Depth m 3.324 12 Maximum Depth m 13 Thermocline Depth m 14 Hypolimnion Depth m 15 Hypol Surface Area acres 16 Runoff m/yr 60.000 17 Shoreline Septic Use cap/yr 18 Extra P Load kg/yr 19 Chl/Secchi Intercept (1/m) 20 Obs Spring P mg/m3 12.154 21 Obs Mean Chi-a mg/m3 22 Obs Max Ch1-a mg/m3 11.500 23 Obs Secchi Depth m 24 Obs HOD g/m2-day -1.000 OUTPUT 1 External P Load kg/yr 73.603

MEAN

0.000

0.000

0.000

0.000 3.324

9.800

0.000

0.000

0.000

0.600

0.000

0.080

6.300

3.800

MEAN

17.943

21.811

24.649

6.200

3.000 0.000

33.042

7.186

0.463 0.443

14.642

12.929

6.252

4,232 0.000

0.000 0.000

0.000

0.000

0.205 0.024

0.011

0.723

0.265

0.008

-0.186

-0.117

-0.108

-1.000

2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Net Internal P Load kg/yr 8 Inflow P Conc mg/m3 9 Overflow Rate m/yr 10 Residence Time yr 11 1 - P Retent Coef 12 P Spring mg/m3 13 Chlorophyll-a mg/m3 14 Max Chl-a mg/m3 15 Secchi Depth m 16 Oxygen Depl Rate g/m2-day 17 Hypol Depth m 18 Hypol Area acres 19 Days of 02 Supply 20 Volumetric HOD g/m3-day 21 P Residence Time yrs 22 TS Discr Score 23 Prob(Eutrophic) 24 Prob(Mesotrophic) 25 Prob(Oligotrophic) 26 Error - P Spring 27 Error - Chl-a 28 Error - Chl Max 29 Error - Secchi 30 Error - HOD

CASE: Elmore

16 Oxygen Depl Rate g/m2-day 0.000 0.000 17 Hypol Depth m 18 Hypol Area acres 0.000 0.000 19 Days of 02 Supply 20 Volumetric HOD g/m3-day 0.000 0.115 21 P Residence Time yrs 22 TS Discr Score 0.022 0.006 23 Prob(Eutrophic) 0.650 24 Prob(Mesotrophic) 0.344 25 Prob(Oligotrophic) 26 Error - P Spring 0.043 -0.201 27 Error - Chl-a 28 Error - Chl Max -0.207

> 0.062 -1.000

29 Error - Secchi

30 Error - HOD

CASE: Fairfield

IN	PUT	MEAN
1	Undev Non-Sedim acres	2494.940
2	Undev Sedimentary acres	290.700
3	Untilled Non-Sedim acres	0.000
4	Untilled Sedimentary acres	170.000
5	Tilled Non-Sedim acres	0.000
6	Tilled Sedimentary acres	113.000
7	Urban Area acres	225.000
8	Lake Surface Area acres	464.362
9	Upstr Lake Ret Fac acres	0.000
10	Mean Depth m	7.233
11	Basin Mean Depth m	7.233
12	Maximum Depth m	12.800
13	Thermocline Depth m	8.000
14	Hypolimnion Depth m	2.840
15	Hypol Surface Area acres	247.000
16	Runoff m/yr	0.680
17	Shoreline Septic Use cap/yr	150.000
18	Extra P Load kg/yr	~ 0.000
19	Chl/Secchi Intercept (1/m)	0.080
20	Obs Spring P mg/m3	19.967
21	Obs Mean Chl-a mg/m3	10.453
22	Obs Max Chl-a mg/m3	21.647
23	Obs Secchi Depth m	2.852
24	Obs HOD g/m2-day	0.450
OU:	IPUT	MEAN
1	External P Load kg/yr	365.564
2	Undeveloped P Load kg/yr	139.044
3	Agricultural P Load kg/yr	95.318
4	Urban P Load kg/yr	86.101
5	Atmospheric P Load kg/yr	37.600
6	Septic P Load kg/yr	7.500
7	Net Internal P Load kg/yr	104.633
8	Inflow P Conc mg/m3	35.334
9	Overflow Rate m/yr	5.503
10	Residence Time yr	1.314
11	1 - P Retent Coef	0.649
12	P Spring mg/m3	22.947
13	Chlorophyll-a mg/m3	9.537
14	Max Ch1-a mg/m3	20.924
15	Secchi Depth m	3.140
16	Oxygen Depl Rate g/m2-day	0.517
17	Hypol Depth m	2.840
18	Hypol Area acres	247.000
19	Days of 02 Supply	65.901
20	Volumetric HOD g/m3-day	0.182
21	P Residence Time yrs	0.854
22	TS Discr Score	0.037
23	Prob(Eutrophic)	0.129
24	Frob(Mesotrophic)	0.814
25	Prob(Oligotrophic)	0.057
26	Error - P Spring	-0.139
27	Error - Chl-a	0.092
28	Error - Chl Max	0.034
29	Error - Secchi	-0.096
30	Error - HOD	-0.139

CASE: Harvevs

INI	TUT	MEAN
1	Undev Non-Sedim acres	3852.000
2	Undev Sedimentary acres	0.000
3	Untilled Non-Sedim acres	914.000
4	Untilled Sedimentary acres	0.000
5	Tilled Non-Sedim acres	155.000
6	Tilled Sedimentary acres	0.000
7	Urban Area acres	97.000
8	Lake Surface Area acres	346.000
- 9	Upstr Lake Ret Fac acres	0.000
10	Mean Depth m	20.000
11	Basin Mean Depth m	20.000
12	Maximum Depth m	44,200
13	Thermocline Depth m	10.000
14	Hypolimnion Depth m	16.400
15	Hypol Surface Area acres	247.000
16	Runoff m/yr	0.550
17	Shoreline Septic Use cap/yr	223.700
18	Extra P Load kg/yr	0.000
19	Chl/Secchi Intercept (1/m)	0.080
20	Obs Spring P mg/m3	13.842
21	Obs Mean Chl-a mg/m3	3.568
22	Obs Max Chl-a mg/m3	7.155
23	Obs Secchi Depth m	6.652
24	Obs HOD g/m2-day	0.426

OUTPUT

29 Error - Secchi 30 Error - HOD

CASE: Morey INPUT MEAN 3924.540 1 Undev Non-Sedim acres 2 Undev Sedimentary acres 0.000 3 Untilled Non-Sedim acres 459.000 4 Untilled Sedimentary acres 0.000 5 Tilled Non-Sedim acres 51.000 6 Tilled Sedimentary acres 0.000 7 Urban Area acres 128.000 8 Lake Surface Area acres 538.460 9 Upstr Lake Ret Fac acres 0.000 8.301 10 Mean Depth m 8.301 11 Basin Mean Depth m 12 Maximum Depth m 13,100 13 Thermocline Depth m 9.000 14 Hypolimnion Depth m 2.000 288.990 15 Hypol Surface Area acres 16 Runoff m/yr 0.560 17 Shoreline Septic Use cap/yr 382.800 18 Extra P Load kg/yr 0.000 19 Chl/Secchi Intercept (1/m) 0.080 20 Obs Spring P mg/m3 27.073 21 Obs Mean Ch1-a mg/m3 9.516 22 Obs Max Ch1-a mg/m3 20.456 23 Obs Secchi Depth m 4.719 24 Obs HOD g/m2-day 0,506 OUTPUT MEAN 1 External P Load kg/yr 274.355 2 Undeveloped P Load kg/yr 133.466 3 Agricultural P Load kg/yr 37.810 4 Urban P Load kg/yr 40.338 5 Atmospheric P Load kg/yr 43.600 19,140 6 Septic P Load kg/yr 97.927 7 Net Internal P Load kg/yr 8 Inflow P Conc mg/m3 23.723 9 Overflow Rate m/yr 5.305 10 Residence Time yr 1,565 11 1 - P Retent Coef 0.706 12 P Spring mg/m3 16.758 7.097 13 Chlorophyll-a mg/m3 14.941 14 Max Ch1-a mg/m3 15 Secchi Depth m 3.884 16 Oxygen Depl Rate g/m2-day 0.437 17 Hypol Depth m 2.000 288.990 18 Hypol Area acres 19 Days of 02 Supply 54.908 20 Volumetric HOD g/m3-day 0.219 21 P Residence Time yrs 1.105 22 TS Discr Score 0.027 23 Prob(Eutrophic) 0.025 24 Prob(Mesotrophic) 0.796 25 Prob(Oligotrophic) 0.180 26 Error - P Spring 0.480 27 Error - Chl-a 0.293 28 Error - Chl Max 0.314 29 Error - Secchi 0.195 30 Error - HOD 0.146

CASE: Iroquois

TUP	11	MEAN
L	Undev Non-Sedim acres	1291.990
2	Undev Sedimentary acres	0.000
3	Untilled Non-Sedim acres	486.000
4	Untilled Sedimentary acres	0.000
5	Tilled Non-Sedim acres	193.000
6	Tilled Sedimentary acres	0.000
7	Urban Area acres	242.000
8	Lake Surface Area acres	205.010
9	Upstr Lake Ret Fac acres	0.000
10	Mean Depth m	5.776
11	Basin Mean Depth m	5.776
12	Maximum Depth m	11.300
13	Thermocline Depth m	7.500
14	Hypolimnian Depth m	2.300
15	Hypol Surface Ares acres	111.150
16	Runoff m/yr	0.600
17	Shoreline Sentic Ree cap/yr	196.500
18	Extra P Load ka/vr	0.000
10	Chl/Sacchi Intercent (1/m)	0.080
20	Ohe Series P re/m3	20 720
20	Obs Moss Chlas ma/m3	10 511
21	Obs Mean Chi-a mg/m3	26 7/2
22	Obs Max Chima mg/ms	20.742
23	Obs HOD s/-2-is-	2.033
44	obs hob g/mz-day	0+307
0114	1 11 5 13 11	ME A M
1	LFUL Restance 2 D Lood he /mm	217 252
1	External P Load Kg/yr	ZI1.303
2	Undeveloped P Load Kg/yr	4/.0//
3	Agricultural P Load Kg/yr	02.140
4	Urban P Load Kg/yr	01./12
2	Atmospheric P Load kg/yr	16.600
0	Septic P Load kg/yr	9.825
7	Net Internal P Load kg/yr	92.197
8	Inflow P Conc mg/m3	37.005
9	Overflow Rate m/yr	7.077
10	Residence Time yr	0.816
11	1 - P Retent Coef	0.825
12	P Spring mg/m3	30.512
13	Chlorophyll-a mg/m3	12.466
14	Max Chl-a mg/m3	28.396
15	Secchi Depth m	2.553
16	Oxygen Depl Rate g/m2-day	0.511
17	Hypol Depth m	2.300
18	Hypol Area acres	111.150
19	Days of O2 Supply	54.033
20	Volumetric HOD g/m3-day	0.222
21	P Residence Time yrs	0.673
22	TS Discr Score	0.051
23	Prob(Eutrophic)	0.413
24	Prob(Mesotrophic)	0.573
25	Prob(Oligotrophic)	0.014
26	Error - P Spring	-0.026
27	Error - Chl-a	-0.171
28	Error - Chl Max	0.258
29	Error - Secchi	0.038
30	Error - HOD	0.139
	•	

CAS	E: Parker	MPA N
1	Under Non-Sedim scree	2644 410
2	Under Codimentary serves	2044.410
2	Untilled Non-Sedim serves	2101 000
~	Untilled Rodimontory cores	2101.000
4 c	milled Sedimentary acres	225 000
2	Tilled Non-Secim acres	323.000
0	Tilled Sedimentary acres	0.000
1	Urban Area acres	108.000
8	Lake Surface Area acres	239.590
.9	Upstr Lake Ket Fac acres	62.991
TO	Mean Depth m	7.611
11	Basin Mean Depth m	7.611
12	Maximum Depth m	14,700
13	Thermocline Depth m	8.000
14	Hypolimnion Depth m	3.050
15	Hypol Surface Area acres	133.380
16	Runoff m/yr	0.600
17	Shoreline Septic Use cap/yr	156.000
18	Extra P Load kg/yr	0.000
19	Chl/Secchi Intercept (1/m)	0.080
20	Obs Spring P mg/m3	15.330
21	Obs Mean Chl-a mg/m3	6.211
22	Obs Max Ch1-a mg/m3	15.684
23	Obs Secchi Depth m	3.795
24	Obs HOD g/m2-day	0.400
001	IPUT	MEAN
1	External P Load kg/yr	355.836
2	Undeveloped P Load kg/yr	94.060
3	Agricultural P Load kg/yr	198.109
4	Urban P Load kg/yr	36.466
5	Atmospheric P Load kg/yr	19.400
6	Septic P Load kg/yr	7.800
7	Net Internal P Load kg/vr	99.956
8	Inflow P Conc mg/m3	27.037
9	Overflow Rate m/vr	13.568
10	Residence Time vr	0.561
11	1 - P Retent Coef	0.710
12	P Spring mg/m3	19,190
13	Chlorophyll-a mg/m3	8.062
14	Max Chl-a mg/m3	17.277
15	Secchi Depth m	3.552
16	Oxygen Depl Rate g/m2-day	0.460
17	Hypol Depth m	3.050
18	Hypol Area acres	133.380
19	Days of 02 Supply	79.563
20	Volumetric HOD g/m3-day	0.151
21	P Residence Time VTS	0.398
22	TS Discr Score	0.036
23	Prob(Eutrophic)	0.104
24	Prob(Mesotrophic)	0.827
- 	Prob(Oligotrophic)	0_069
4.J 26	Error - D Saring	-0 225
40 27	Remove - Chi-a	-0.223
41 20	BLIUE - Chl Mar	-0.201
-40 -20	Brior - Chi Max Fance - Chi Max	0.097
27	Error - BOD	0.000 _0.160
эv	prior - Hon	-0+140

CASE:	St	Cather
INPUT		

INI	PUT	MEAN
1	Undev Non-Sedim acres	5118.850
2	Undev Sedimentary acres	0.000
3	Untilled Non-Sedim acres	880.000
4	Untilled Sedimentary acres	0.000
5	Tilled Non-Sedim acres	298.000
6	Tilled Sedimentary acres	0.000
7	Urban Area acres	298.000
8	Lake Surface Area acres	852,150
9	Upstr Lake Ret Fac acres	316.955
10	Mean Depth m	10.723
11	Basin Mean Depth m	10.723
12	Maximum Depth m	19.500
13	Thermocline Depth m	10.000
14	Hypolimnion Depth m	5.420
15	Rypol Surface Area acres	491.530
16	Runoff m/vr	0.460
17	Shoreline Septic Hae can/vr	814 423
18	Extra P Load kg/yr	0_000
19	Chl/Secchi Intercent (1/m)	0.080
20	Ohe Spring P mg/m3	11 755
20	Obe Mean Chlee mg/m3	3,184
22	Obe Mar Chi-a mg/m3	4.400
22	Obe Reachi Depth m	6 384
23	Obs NOD s/m2-day	0.004
44	OUS HOD g/mz-day	0.405
0117		M72 Å N
1	Enternal D Lead he (un	401 905
· 1	External P Load kg/yr	401.005
4	Undeveloped r Load kg/yr	-1J4.144
د	Agricultural P Load Kg/yr	80.800
4	Urban P Load kg/yr	//.142
2	Atmospheric P Load kg/yr	69.000
6	Septic P Load kg/yr	40.721
7	Net Internal P Load kg/yr	30.369
8	Inflow P Conc mg/m3	28.972
.9	Overflow Rate m/yr	4.020
10	Residence Time yr	2.667
11	I - P Retent Coef	0.383
12	P Spring mg/m3	11.104
13	Chlorophy11-a mg/m3	4.820
14	Max Chl-a mg/m3	9.612
15	Secchi Depth m	4.987
16	Oxygen Depl Rate g/m2-day	0.344
17	Hypol Depth m	5.420
18	Hypol Area acres	491.530
19	Days of 02 Supply	189.066
20	Volumetric HOD g/m3-day	0.063
21	P Residence Time yrs	1.022
22	TS Discr Score	0.018
23	Prob(Eutrophic)	0.001
24	Prob(Mesotrophic)	0.422
25	Prob(Oligotrophic)	0.577
26	Error - P Spring	0.057
27	Error - Chl-a	-0.415
28	Error - Chl Max	-0.781
29	Error - Secchi	0.247
30	Error - HOD	0.163

CASE: Shelburne INPUT MEAN 1 Undev Non-Sedim acres 386.460 2 Undev Sedimentary acres 1679.000 3 Untilled Non-Sedim acres 0.000 4 Untilled Sedimentary acres 1471.000 0.000 5 Tilled Non-Sedim acres 6 Tilled Sedimentary acres 788.000 7 Urban Area acres 148.000 8 Lake Surface Area acres 449.540 9 Upstr Lake Ret Fac acres 0.000 10 Mean Depth m 3.607 11 Basin Mean Depth m 3.607 12 Maximum Depth m 7.900 13 Thermocline Depth m 4.000 14 Hypolimnion Depth m 1.400 15 Hypol Surface Area acres 210.000 16 Runoff m/yr 0.600 17 Shoreline Septic Use cap/yr 0.000 18 Extra P Load kg/yr 0.000 19 Chl/Secchi Intercept (1/m) 0.080 20 Obs Spring P mg/m3 112.607 21 Obs Mean Ch1-a mg/m3 75.764 22 Obs Max Chl-a mg/m3 140.712 23 Obs Secchi Depth m 0.488 24 Obs HOD g/m2-day -1.000OUTPUT MEAN 932.907 1 External P Load kg/yr 2 Undeveloped P Load kg/yr 197.616 648.918 3 Agricultural P Load kg/yr 4 Urban P Load kg/yr 49.972 5 Atmospheric P Load kg/yr 36.400 0.000 6 Septic P Load kg/yr 7 Net Internal P Load kg/yr 531.315 8 Inflow P Conc mg/m3 78.027 9 Overflow Rate m/yr 6.569 10 Residence Time yr 0.549 11 1 - P Retent Coef 1.000 12 P Spring mg/m3 78.027 13 Chlorophyll-a mg/m3 30.133 14 Max Chl-a mg/m3 77.666 15 Secchi Depth m 1.200 16 Oxygen Depl Rate g/m2-day 0.514 17 Hypol Depth m 1.400 18 Hypol Area acres 210.000 19 Days of 02 Supply 32.688 20 Volumetric HOD g/m3-day 0.367 21 P Residence Time yrs 0.549 22 TS Discr Score 0.127 23 Prob(Eutrophic) 0.970 24 Prob(Mesotrophic) 0.030 25 Prob(Oligotrophic) 0.000 26 Error - P Spring 0.367 27 Error - Chl-a 0.922 28 Error - Chl Max 0.594 29 Error - Secchi -0.900 30 Error - HOD -1.000

CASE: Star INPUT 1 Undev Non-Sedim acres 2 Undev Sedimentary acres

0.000 3 Untilled Non-Sedim acres 82.000 0.000 4 Untilled Sedimentary acres 5 Tilled Non-Sedim acres 6.000 6 Tilled Sedimentary acres 0.000 7 Urban Area acres 20,000 8 Lake Surface Area acres 56.810 9 Upstr Lake Ret Fac acres 0.000 10 Mean Depth m 1.477 1.477 11 Basin Mean Depth m 12 Maximum Depth m 2.400 13 Thermocline Depth m 0.000 14 Hypolimnion Depth m 0.000 15 Hypol Surface Area acres 0.000 16 Runoff m/yr 0.580 17 Shoreline Septic Use cap/yr 12.000 18 Extra P Load kg/yr 0.000 19 Chl/Secchi Intercept (1/m) 0.700 20 Obs Spring P mg/m3 13.719 21 Obs Mean Chl-a mg/m3 19.774 22 Obs Max Ch1-a mg/m3 37.229 23 Obs Secchi Depth m 0.849 24 Obs HOD g/m2-day -1.000

MEAN 544.190

MEAN

0.018

0.001

0.455

0.544

0.199

1.400

1.340

OUTPUT

Т

ASE: Winona	· •
NPUT	MEAN
1 Undev Non-Sedim acres	993.350
2 Undev Sedimentary acres	569.000
3 Untilled Non-Sedim acres	0.000
4 Untilled Sedimentary acres	579.000
5 Tilled Non-Sedim acres	0.000
6 Tilled Sedimentary acres	134.000
7 Urban Area acres	54.000
8 Lake Surface Area acres	234.650
9 Upstr Lake Ret Fac acres	0.000
10 Mean Depth m	1.019
ll Basin Mean Depth m	1.019
12 Maximum Depth m	2.700
13 Thermocline Depth m	0.000
14 Hypolimnion Depth m	0.000
15 Hypol Surface Area acres	0.000
l6 Runoff m/vr	0.580
17 Shoreline Septic Use cap/vr	10.500
18 Extra P Load kg/yr	0_000
19 Ch1/Secchi Intercept (1/m)	0.080
20 Obs Spring P mg/m3	25.938
21 Obs Mean Chl-a mg/m3	-1.000
22 Obs Max Chl-a $mg/m3$	-1.000
23 Obs Secchi Depth m	-1.000
24 Obe HOD c/m2-day	-1.000
the ope hose give day	*****
ORTPHT	MRAN
1 External P Load kg/vr	308.434
2 Indeveloped P Load kg/yr	95,114
3 Agricultural P Load kg/gr	176,170
A Heben D Logd bo/vr	17.625
5 Atmospheric P Logd Vo/VT	19,000
6 Sentic P Load kg/yr	0.525
7 Not Internal P Logd kg/vr	0.000
8 Inflow P Conc. mg/m3	51.229
9 Growflow Rate m/wr	6.338
10 Residence Time Vr	0.161
11 I - P Retent Coef	0.515
12 P Spring mg/m3	26.362
13 Chlorophyll=g mg/m3	10-866
14 May Chl-a mg/m3	24.279
15 Secchi Denth m	2.844
16 Ovygen Denl Rate g/m?-dav	0.000
17 Urnel Depth m	0.000
18 Bunol Area acres	0.000
10 Dame of 02 Supply	0.000
20 Volumetric HOD c/m3-day	0.000
21 D Pasidonas Time was	0.000
21 i Restuence time yls	0_041
22 10 DIGLI DUGLE 23 Dech(Eutrophic)	0_201
24 Droh(Magatrophic)	0 762
25 Prob(Alizotrophic)	0.037
25 Front D Camina	
20 Brior - r Spring 27 Ferror - Chles	_1 _1 _1
2/ Brior - Chi Ma-	_1 000
20 Bruner - Secol-	_1 000
27 BITOT - DECCUL	-1.000

0
CASE: Halls	
INPUT	MEAN
1 Undev Non-Sedim acres	393.000
2 Undev Sedimentary acres	0.000
3 Untilled Non-Sedim acres	50.000
4 Untilled Sedimentary acres	0.000
5 Tilled Non-Sedim acres	6.000
6 Tilled Sedimentary acres	0.000
7 Urban Area acres	28.000
o Lake Suriace Area acres	84.000
9 Upser Lake Ket Fac acres	0.200
11 Regin Mean Donth m	5.000
12 Maximum Denth m	0 200
13 Thermocline Depth m	7.000
14 Hypolimnion Depth m	1.300
15 Hypol Surface Area acres	29,600
16 Runoff m/yr	0.550
17 Shoreline Septic Use cap/yr	76.500
18 Extra P Load kg/yr	0.000
19 Chl/Secchi Intercept (1/m)	0.080
20 Obs Spring P mg/m3	10.100
21 Obs Mean Ch1-a mg/m3	6.500
22 Obs Max Chl-a mg/m3	12.800
23 Obs Secchi Depth m	3.800
24 Obs HOD g/m2-day	0.180
OUTPUT .	MEAN
1 External P Load kg/yr	36.314
2 Undeveloped P Load kg/yr	12.919
3 Agricultural P Load kg/yr	4.102
4 Urban P Load kg/yr	8.666
5 Atmospheric P Load kg/yr	6.802
6 Septic P Load kg/yr	3.825
/ Net Internal P Load kg/yr	5.139
8 Inflow P Conc mg/m3	29.070
9 UVERILOW KALE m/yr	3.0/3
10 Residence fille yr	1.301
$\frac{11}{12} = \frac{12}{12} = 12$	14 592
13 Chlorophyll= $a mg/m3$	6.232
14 Max Ch1-a mg/m3	12.881
15 Secchi Depth m	4.241
16 Oxygen Depl Rate g/m2-day	0.204
17 Hypol Depth m	1.300
18 Hypol Area acres	29.600
19 Days of O2 Supply	76.612
20 Volumetric HOD g/m3-day	0.157
21 P Residence Time yrs	0.683
22 TS Discr Score	0.022
23 Frob(Eutrophic)	0.006
24 Prob(Mesotrophic)	0.653
25 Frob(Uligotrophic)	0.341
20 Error - P Spring	-0.308
2/ EFFOT - UNI-8 20 Empon - Chi Mar	0.042
20 Error - Cat Max 20 Error - Socobi	-0.000
30 Error - HOD	-0.123

CASE: Shadow INPUT MEAN 1 Undev Non-Sedim acres 2787.000 2 Undev Sedimentary acres 0.000 3 Untilled Non-Sedim acres 429.000 4 Untilled Sedimentary acres 0.000 5 Tilled Non-Sedim acres 71.000 6 Tilled Sedimentary acres 0.000 7 Urban Area acres 89.000 8 Lake Surface Area acres 2010 199.000 9 Upstr Lake Ret Fac acres 573.000 10 Mean Depth m 20,900 11 Basin Mean Depth m 20.900 12 Maximum Depth m 42.400 13 Thermocline Depth m 10.000 14 Hypolimnion Depth m 15.700 15 Hypol Surface Area acres 187.000 16 Runoff m/yr 0.600 17 Shoreline Septic Use cap/yr 183.000 18 Extra P Load kg/yr 0.000 19 Chl/Secchi Intercept (1/m) 0.080 20 Obs Spring P mg/m3 5.578 21 Obs Mean Chl-a mg/m3 3.824 22 Obs Max Chl-a mg/m3 7.389 23 Obs Secchi Depth m 7.019 24 Obs HOD g/m2-day 0.427 OUTPUT MEAN 1 External P Load kg/yr 177.080 80.672 2 Undeveloped P Load kg/yr 41.094 3 Agricultural P Load kg/yr 30.051 4 Urban P Load kg/yr 5 Atmospheric P Load kg/yr 16.113 6 Septic P Load kg/yr 9.150 4.846 7 Net Internal P Load kg/yr 20.391 8 Inflow P Conc mg/m3 9 Overflow Rate m/yr 10.779 1.939 10 Residence Time yr 11 1 - P Retent Coef 0.360 7.340 12 P Spring mg/m3 13 Chlorophyll-a mg/m3 3,267 6.169 14 Max Chl-a mg/m3 6.186 15 Secchi Depth m 0.220 16 Oxygen Depl Rate g/m2-day 15.700 17 Hypol Depth m 187.000 18 Hypol Area acres 855.626 19 Days of 02 Supply 0.014 20 Volumetric HOD g/m3-day 0.698 21 P Residence Time yrs 0.014 22 TS Discr Score 0.000 23 Prob(Eutrophic) 0.193 24 Prob(Mesotrophic) 25 Prob(Oligotrophic) 0.807 -0.275 26 Error - P Spring 27 Error - Chl-a 0.158 0.181 28 Error - Chl Max 0.126 29 Error - Secchi

0.662

30 Error - HOD

ALCE. A	
CASE: SURSEL TNDUT	MRAN
1 Under Non-Sedim acres	893.000
2 Undev Sedimentary acres	0.000
3 Untilled Non-Sedim acres	32.000
4 Untilled Sedimentary acres	0.000
5 Tilled Non-Sedim acres	12.000
6 Tilled Sedimentary acres	0.000
7 Urban Area acres	60.000
8 Lake Surface Area acres	195.000
9 Upstr Lake Ret Fac acres	439.000
10 Mean Depth m	18.600
11 Basin Mean Depth m	18.600
12 Maximum Depth m	36.000
13 Thermocline Depth m	8.000
14 Hypolimnion Depth m	14.500
15 Hypol Surface Area acres	152.000
16 Runoff m/yr	0.460
1/ Shoreline Septic Use cap/yr	48.000
10 Chi(Cashi Tataganh (1/m)	0.000
19 Chi/Secchi intercept $(1/m)$ 20 Obs Series B $-\pi/\pi^2$	6 117
20 Obs Spring r mg/m3	0.11/
21 Obs Mean China mg/m3	2 414
23 Obs Secchi Benth m	9 490
24 Obs HOD g/m2-day	0.140
24 050 205 6/22 04/	· • • • • •
OUTPUT	MEAN
l External P Load kg/yr	49.466
2 Undeveloped P Load kg/yr	12.683
3 Agricultural P Load kg/yr	3.062
4 Urban P Load kg/yr	15.532
5 Atmospheric P Load kg/yr	15.789
6 Septic P Load kg/yr	2.400
/ Met Internal r Load kg/yr	0.077
a furiow r conc mg/ms	22.283
9 Overilow Alle m/yr	2.012 5.515
11 1 m P Potent Coof	0.015
12 P Spring mg/m3	5 660
13 Chlorophyll=g mg/m3	2 554
14 Max Ch1-a mc/m3	4.659
15 Secchi Depth m	7.471
16 Oxvgen Depl Rate g/m2-day	0.172
17 Hypol Depth m	14.500
18 Hypol Area acres	152.000
19 Days of O2 Supply	1010.650
20 Volumetric HOD g/m3-day	0.012
21 P Residence Time yrs	1.677
22 TS Discr Score	0.009
23 Prob(Eutrophic)	0.000
24 Prob(Mesotrophic)	0.026
25 Prob(Oligotrophic)	0.974
26 Error - P Spring	0.080
2/ Error - Chl-a	-0.550
20 Error - Uni Max	-0.039
27 BITOI - Secchi 20 France - NOR	0.239
JUDE - JUDI .	-u.20/

In UT TO STREES

APPENDIX E

obs: observed (symbol=last digit of year) est: estimated (L=Landsat,P=Planning Map,X=Best)

Phosphorus and oxygen depletion predictions are OK. Chlorophyll and transparency data indicate substantial under-prediction of summer algal populations. Carmi is an outlier on the observed chlorophyll-a vs. observed spring P plot and chlorophyll-a levels tend to rise sharply in eary summer. Summer phosphorus concentrations are likely to be considerably greater than the spring values and may be related to internal loadings. Better chlorophy11 and transparency predictions could achieved be by using a steeper phosphorus/chlorophyll relationship. Under-prediction may be also related to relatively high percentage of wetlands in watershed.

There is reasonable agreement in spring phosphorus; no other response measurements are available.

obs: observed (symbol=last digit of year) est: estimated (L=Landsat,P=Planning Map,X=Best)

Agreement is reasonable for all variables. Slight over-prediction of P might be attributed to the elogated nature of the lake, which would tend to increase trapping efficiency for sediment and nutrients and to cause lake conditions to be sensitive to the geographical distribution of intensive land uses within the watershed. Variance between LS and PM relatively large, owing to differences in estimated urban land use.

)

Spring Phosphorus (mg/m3) 35 0 7 89 01 obs: X P est: L Õ Mean Chlorophyll-a (mg/m3) 25 8 79 01 obs: L XP est: 0 Maximum Chlorophyl1-a (mg/m3) 50 obs: 8790 L. X P est: Mean Transparency (m) 8 0 7891 obs: PX L est: Oxygen Depletion Rate (g/m3-day) Û .4 obs: est: LAKE: Elmore obs: observed (symbol=last digit of year) est: estimated (L=Landsat,P=Planning Map,X=Best) There is good agreement for all response variables and little difference between LS and PM.

.

Agreement is reasonable for all variables. Model indicates that internal loading is significant. The variance between LS and PM is wide.

Δ Spring Phosphorus (mg/m3) 35 oba: 78 90 1 est: LXP 25 A Mean Chlorophyll-a (mg/m3) 8 791 0 obs: est: LXP 0 50 Maximum Chlorophyll-a (mg/m3) 8 790 obs: est: LX P 8 £ Mean Transparency (m) 9 1 7.80 obs: х est: P L 0 Oxygen Depletion Rate (g/m3-day) 4 901 obs: est: LPX LAKE: Harveys obs: observed (symbol=last digit of year) est: estimated (L=Landsat,P=Planning Map,X=Best)

Spring Phosphorus concentrations are substantially under-predicted, though agreement is good for chlorophyll-a and transparency. Year-to-year variability in observed spring P is large (10-22 mg/m3). P error could be partially attributed to loading from South Peacham Brook, which discharges to the lake outlet but has been observed to backflow into the lake during high-flow periods (VAEC, 1981). South Peacham has a drainage area of 7826 acres, compared with the lake watershed of 5255 acres used in the above calculations, and has a higher percentage of cropland. Predicted spring phosphorus concentration (7.9 mg/m3) lies between the mean observed spring P (14 mg/m3) and the summer, epilimnetic concentrations observed in 1980 (3-8 mg/m3). The lake has metalimnetic algal populations, which are a factor in interpreting the relationship between chlorophyll and transparency.

obs: observed (symbol=last digit of year)

est: estimated (L=Landsat,P=Planning Map,X=Best)

Agreement is resaonable for all variables. Slight under-prediction of spring P and oxygen depletion might be attributed to morphometric complexity, since the lake has a large, shallow, southern bay and a deep, northern hypolimnetic basin. The nutrient retention efficiencies of these basins are likely to be different, which would make the lake conditions somewhat sensitive to the geographical distributions of intensive land uses within the watershed. The above analysis assumes a thermocline depth of 11 meters. Re-examination of the data indicates that a thermocline depth of 9 meters may be more representative, though this change has little influence on the predicted responses.

est: estimated (L=Landsat, P=Planning Map, X=Best)

Agreement is reasonable for all variables. Model indicates significance of internal loading. The wide variance between LS and PM is attributed to differences in urban land use and to the high loading sensitivity.

obs: observed (symbol=last digit of year) est: estimated (L=Landsat,P=Planning Map,X=Best)

Model lake productivity, based upon phosphorus, underpredicts chlorophyll, and oxygen depletion. Agreement is good for transparency because of metalimnetic algal populations. Internal loading is significant. The above predictions assume an export .05 kg/cap-yr for shoreline septic systems, which factor of translates into a septic loading of 19 kg/yr. The lake shoreline is steep and soils are generally thin. An independent analysis (VDWR,1979) indicates a most likely septic loading of 75 kg/yr. If this value is used in place of the above, the predicted phosphorus concentration is 28 mg/m3, compared with the observed mean value of 27 mg/m3.

.

The "best" land use estimates tend to overpredict lake productivity slightly, although there is extremely wide variance between LS and PM. Prediction accuracy is limited by accuracy of land use information. Over-prediction of phosphorus may be related to high percentage of coniferous forest.

There is good agreement in spring phosphours and oxygen depletion. Agreement in chlorophyll and transparency would be improved by using a steeper phosphorus/chlorophyll regression, since the lake in the lower range of phosphorus values.

obs: observed (symbol=last digit of year) est: estimated (L=Landsat,P=Planning Map,X=Best)

This is the most eutrophic lake in the data set because of its sedimentary, agricultural watershed and the estimated significance of internal loading. Soil types (Vergennes clay) are relatively unique, poorly drained and erodible and there is a high percentage of wetlands. Phosphorus export coefficients may be underestimated. Because its watershed and water quality conditions are unique among Vermont lakes, a low weight has been attached to data from this lake in calibrating the framework. The data are very weak in terms of oxygen and temperature profiles. A graph of data from August, 1968 (Morse and Flanders, 1971) indicates a thermocline depth of 4 meters and anoxic conditions below that level. Profiles from 1969, however, do not indicate vertical stratification. Thus, there is a question as to whether or not the lake should be considered stratified for modeling purposes. Predictions are not very sensitive to assumed thermocline level, but if unstratified conditions are assumed, the predicted productivities are considerably lower than the above. Better agreement could be achieved in chlorophyll and transparency by using a steeper phosphorus/chlorophyll relationship, since the lake is at the upper end of phosphorus values.

• •

While there is reasonable agreement between mean observed and predicted spring phosphorus concentrations, the observed year-to-year variability is extremely high (7-23 mg/m3). Considering the shallowness of this lake, it may be subject to anaerobic conditions during winters of prolonged ice-cover, which would promote internal phosphorus cycling. The relatively rapid flushing rate would also tend to increase year-to-year and seasonal variability in phosphorus and productivity. The lake is an outlier on the observed chlorophyll vs. observed Under-prediction of summer productivity (as phosphorus plot. measured by chlorophyll and transparency) might be related to shallowness (recycling) or to high flushing rate. Summer phosphorus concentrations are likely to be considerably higher than spring values.

obs: observed (symbol=last digit of year) est: estimated (L=Landsat,P=Planning Map,X=Best)

455

Winona has the lowest mean depth (1.5 meters) and lowest hydraulic residence time (.16 meters). Like Star, the variability in observed spring phosphorus is large (20-40 mg/m3). There are no chlorophyll or transparency dats, however, to indicate whether summer productivity responds similarly to Star (see previous page).

est: estimated (L=Landsat,P=Planning Map,X=Best)

Testing lake (not used in model calibration)

The model tends to over-predict spring phosphorus concentration, although the year-to-year variability in observed values is large and there is a wide variance between LS and PM land use estimates. Over-prediction of phosphorus may be related to high percentage of coniferous forest. Agreement is good for chlorophyll, transparency, and oxygen depletion.

Spring Phosphorus (mg/m3) 35 A 9 710 obs: 8 LX est: P 0 Mean Chlorophyll-a (mg/m3) 25 01 9 obs: est: LX P 50 Û Maximum Chlorophyll-a (mg/m3) 9 obs: 0 est: LX P 8 A Mean Transparency (m) obs: 91 0 X Ľ est: ₽ Oxygen Depletion Rate (g/m3-day) O .4 obs: 1 80 est: LXP LAKE: Shadow obs: observed (symbol=last digit of year) est: estimated (L=Landsat,P=Planning Map,X=Best)

Testing lake (not used in model calibration)

Shadow Lake is oligotrophic and is the second least productive of the lakes in the data set. Agreement is reasonable for all variables. Slight over-prediction of phosphorus may be related to high percentage of coniferous forest.

35 A Spring Phosphorus (mg/m3) 9 8 0 obs: 1 LXP est: Mean Chlorophyll-a (mg/m3) 25 8901 obs: L PX est: 50 Maximum Chlorophyll-a (mg/m3) 980 obs: est: L PX 8 Mean Transparency (m) 1098 oba: PX L est: Oxygen Depletion Rate (g/m3-day)4 Û. obs: 890 est: LPX LAKE: Sunset obs: observed (symbol=last digit of year) est: estimated (L=Landsat.P=Planning Map,X=Best)

Testing lake (not used in model calibration)

Sunset is the least productive of the study lakes, based upon observed chlorophyll and transparency data. Phosphorus trapping by upstream lakes is an important factor regulating nutrient loadings. While there is good agreement for spring phosphorus, summer productivity is over-predicted, based upon chlorophyll and transparency measurements. While the precentage error in mean chlorophyll-a is large (42%), the absolute error is small (1.1 mg/m3) in relation to potential analytical errors at the low chlorophyll levels and the lake is correctly ranked by the model framework as the least productive of the study lakes. Agreement in chlorophyll and transparency would be improved ₽A using a steeper chlorophyll/phosphorus relationship.

APPENDIX F

Plots of Phosphorus and Chlorophyll Residuals

Symbol	Meaning
r-pspr	phosphorus residual (loge(observed/predicted))
r-chl	mean chlorophyll residual "
af-und	undeveloped, glacial watershed area/drainage area
af-undlp	undeveloped, sedimentary watershed area/drainage area
af-unt	untilled agric., glacial watershed area/drainage area
af-unt lp	untilled agric., sedimentary watershed area/drainage area
af-tld	tilled, glacial watershed area/drainage area
af-tldlp	tilled, sedimentary watershed area/drainage area
af-urban	urban watershed area/drainage area
af-lake	lake surface area/drainage area
af-ulakf	upstream lake retention factor/drainage area
af-wetl	wetland area/drainage area
ff-conif	conifer forest/total forest area
ff-hdwd	hardwood forest/total forest area
ff-mixed	mixed forest/total forest area
lf-und	undeveloped loading/total external loading
lf-agr	agricultural loading/total external loading
lf-urb	urban loading/total external loading
lf-septic	septic system loading/total external loading
lf-atm	atmospheric loading/total external loading
lf-inter	net internal loading/total external loading
sarea	<pre>lake surface area (acres)</pre>
log(t)	log(hydraulic residence time, (yr))
log(qs)	log(surface overflow rate, (m/yr))
runoff	regional runoff rate (m/yr)
shordev	shoreline development ratio
zx	maximum depth (m)
zmean	mean depth (m)
zx/zmean	maximum depth/mean depth
ztherm	thermocline depth (m)
zhyp	mean hypolimnetic depth (m)

.

· · ·					
÷					
nenn (laka) m		.			
0.563 (Hw	s. ar-unu	LP ·			
0.514					
0.465 Mo					
0.416					· ·
0.367				· · · ·	Sh
0.318 Bo					
0.269					·
0.220 St					
0.171 CeHo		•			
0.122					
0.073 CaSCSu	1. T				·
0.024 E1					
-0.025 Ir			Wi		•
-0.074	_				
-0.123	Fa				
-U.1/2 UU					
-V.221 Fa		· .			
-U+2/UIDW					
-0.368 Nº					
0.000	0.068	0.136	0.205	0.273	0.341

r-chl (lake) vs. af-undlp 1.400 St 1.297! 1.194! 1.092! 0.989 Ca 0.886 Sh 0.784! 0.681 0.579! 0.476 0.373! 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 Cu -0.140 HoIr -0.242 ElPa -0.345! -0.448 SC -0.550 Su +	-	0.000	0.068	0.136	0.205	0.273	0.341	
r-chl (lake) vs. af-undlp 1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 Cu -0.140 HoIr -0.242 ElPa -0.345 -0.345 -0.448 SC -0.550 Su +			•		× .	 		
r-chl (lake) vs. af-undlp 1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 0.886 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 Cu -0.140 HoIr -0.242 ElPa -0.345 -0.345 -0.448 SC -0.550 Su +								
1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.140 HoIr -0.140 HoIr -0.242 EIPa $-0.345 -0.345 -0.448 SC -0.550 Su ++++++++++$	r-chl	(lake) v	s. af-undl	P				
1.297 i $1.194 i$ $1.092 i$ $0.989 i Ca$ $0.886 i$ $0.784 i$ $0.681 i$ $0.579 i$ $0.476 i$ $0.373 i$ $0.271 i Mo$ $0.168 i BoSw$ $0.065 i HvHa Fa$ $-0.037 i Cu$ $-0.140 i HoIr$ $-0.242 i EIPa$ $-0.345 i$ $-0.345 i$ $-0.448 i SC$ $-0.550 i Su$ $+++++-++++++++++++++++++++++++$	1.4	400 St						
1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 $\frac{6u}{100}$ -0.140 HoIr -0.242 ELPa -0.345 -0.448 SC -0.550 Su +	1	2971		•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1	[94] \\\\21			,			
0.886 Sh 0.784 Sh 0.681 Sh 0.579 Sh 0.476 Sh 0.373 Sh 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 Sh -0.140 HoIr -0.140 HoIr -0.242 ElPa -0.345 Sh -0.448 SC -0.550 Su +	0.0	174 189 Ca						
0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 Cu -0.140 HoIr -0.242 ElPa -0.345 -0.345 -0.448 SC -0.550 Su ++	0.8	886 1					<u>ch</u>	
0.681 0.579 0.476 0.373 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 leu -0.140 HoIr -0.242 IEIPa -0.345 -0.345 -0.448 ISC -0.550 Su +	0:7	841			· · · · ·	· . ·.	911	
0.579 0.476 0.373 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 Gu -0.140 HoIr -0.242 [EIPa -0.345] -0.448 [SC -0.550 [Su +	0.6	581						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	579						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4	76						
0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 Cu -0.140 HoIr -0.242 EIPa -0.345 -0.448 SC -0.550 Su +	0.3	73				· · · ·		
0.168 BoSw 0.065 HvHa Fa -0.037 Gu -0.140 HoIr -0.242 EIPa -0.345 -0.448 SC -0.550 Su +	0.2	271 Mo		· .				
0.065 HvHa Fa -0.037 Gu -0.140 HoIr -0.242 ElPa -0.345 -0.448 SC -0.550 Su +	0.1	68 BoSw					:	
-0.037 6u0.140 HoIr0.242 EIPa0.345 -0.448 SC0.550 Su +++	0.0)65 HvHa 👘	Fa				,	
-0.140 HoIr -0.242 ElPa -0.345 -0.448 SC -0.550 Su ++- 0.000 0.068 0.136 0.205 0.273 0.341	-0.0)37 Cu		· · · · · ·	······	· · · · · ·		
-0.242 [EIPa -0.345] -0.448 [SC -0.550 [Su ++	-0.1	40 Holr						
-0.3451 -0.448 SC -0.550 Su ++ 0.000 0.068 0.136 0.205 0.273 0.341	-0.2	242 (ELPa			•			
-0.550 Su ++ 0.000 0.068 0.136 0.205 0.273 0.341	-0.3	9421 Valer		· ·				
-0.000 + 0.068 + 0.136 + 0.005 + 0.341	-0.4	140 100 50 91						
0.000 0.068 0.136 0.205 0.273 0.341	-v.,	4						
		0.000	0.068	0.136	0.205	0.273	0.341	

r-pspr (lake)) vs. af-u	ot ·					. •
0.563	-	· ·	Ηv				
0.514							
0.4651	Мо						
0.416					· . ·	· * .	
0.367 Sh		·					
0.318	Bo			•		· · · ·	
0.2691							· ·
0.220		St					
0.171	Ho		Ce				
0.122		•					
0.073	5	SC	•	Ca			
0.076	5 u	20 ·	•	Va			
-0.0241	· · · · · · · · · · · · · · · · · · ·			T			·
-V.VZJ(#1				11			
-0.102							
-U.123 /ra					-		e e gort de
-0.1/2		. '			Cu		· _
-0.221(Pa
-0.270)		Sw				· • •	
-0.319						. •	
-0.368	Ha						
+ 000_0	0.078	0.	+ 155	0.233		0.310	0.388

r-chl (lake) vs. af-unt 1.400| Sŧ 1.297 1.1941 1.092 0.9891 Ca 0.886 | Sh 0.784 0.681 0.579 0.476 0.3731 0.271 Мо 0.168 Bo Śŵ 0.065 Fa Ηv Ba -0.0371 -0.1401 Ir Нο -0.2421 E1 Pa -0.4481 SC Su 0.000 0.310 0.155 0.233 0.388 0.078

<u> </u>	

r-pspr (lake)	vs. af-ur	tlo			
0.563 Hy					
0.514					
0.465 Mo					
0.416					
0.367					Sh
0.318 Bo					
0.269					
0.220 St					
0.171 CeHo					
0.1221					
0.073 CaSCS	u			· ·	
0.024 E1				·	
-0.025 Ir				Wi	
-0.074					. ⁻ .
-0.123	Fa			•	
-0.172 Cu	•				
-0.221 Pa		•			
-0.270 Sw					
-0.319					
-0.368 Ha	· .				
0.000	0.060	0.120	0.179	0.239	0.299
				- - - -	
	· · · · · · · · · · · · · · · · · · ·				•
· .					
•	•				
T-CDI (lake)	vs. af-un	erb			
1.400 50					
1.2971					
1.194					
1.0921					
• 0 . 989 ICa					

0.886 Sh 0.681 0.579 0.476| 0.373| 0.271 Mo 0.168 BoSw 0.065 HvHa Fa -0.037 |cu -0.140 HoIr -0.242 |E1Pa -0.3451 -0.448 SC -0.550 |Su +-0.120 0.239 0.299 0.060 0.179 0.000

0.563	1		HT			· .		
0.514	1			•	· · ·	· · ·		;
0.465	-	Mo	1.2					
0.416	1							
0.367	Sh,			•				
0.318	1 77		Bo		-		. · · ·	
0.269	1 👘					•		
0.220	1	Sť						
0.171	1		Но					Ce
0.122	1							
0.073	1	Su		SC			Ca	
0.024	1 <u></u>		<u>E1</u>		· ·			
-0.025	Wi.		· · · ·			Ir	· · · · · · · · · · · · · · · · · · ·	
-0.074	1							
-0.123	Fa				•			
-0.172	i .		Cu					
-0.221	1				Pa			
-0.270	1 .		Sw				· .	•
-0.319	1.							
-0.368	ł	На					· .	
1	+		+-					+
0	.000)	0.03	1	0.061	0.092	0.122	0.153
			• •					
							and the second second	

-0.550	Su	· .	30			·			
-0.3431			80						
-0.2421		E1		Pa					
-0.140		Ho		_	Ir				
-0.037	· · ·	- Cu	<u></u>	· · · ·		· · · · ·			· · · · · · · · · · · · ·
0.065 Fa	Ha	Ηv							
0.168	5	SwBo							
0.271	Mo	· •							
0.373									
0.476									
0.579									•
0.681		-						•	
0.7841									
0.886(Sh									
0.989							Ca		
1 092				•	•				• •
1 104									
1.4001	SE								
1 1001	,						• .		

.514					•	1			
-4651Mo		·			•		•	. '	
-410 - 267			• •					~	
-30/ 			· .			· •		Sh	
260	,	•			. •	· · · ·			
2203 220 8+ 5	•			. *					•
171 Collo	• •				,	2			
.122									•
.073 CaSCSu									
.024 E1							•		
.025 Ir		Wi	··· · · · · ·						•
.074									
.123	Fa					1. F			
.172 Cu			:						
.221 Pa							÷		
.270 Sw									
.319									
.368 Ha	• •								

0.096

0.128

r-chl (lake) af-tld1p 78 1.400|St 1.297 1.194 1.092 0.989 |Ca 0.8861 0.784 0.681 0.5791 0.476 0.373 0.271 Mo 0.168 BoSw 0.065 | HvHa Fa -0.037 Car -0.140 Holr -0.242 ElPa -0.3451 -0.448 |SC -0.550|Su +-0.000 0.032 0.064

Sh

0.160

0.100	0.084	0.067	0.051	0.034	0.018
			Su		-0.550
	1.	•	• - • • • • • • •		
				51	-0.242 Pa
Ir			Но		-0.140
	Cu	6	Ha F		-0.037
			- 80	- -	0.168 Sw
				•	0.271 Mc
					0.3/3

0.476 0.579 0.681 0.784 0.886 0.989 .092 Ca Sh

-0.319 -0.025 Ò .172 .074 270 23 0.018 Pa Wi ŝ 0.034 0.051 Ha Fa 0.067 • G 0,084 0.100

Su 片

ŝ င္ပ E SC Ge Ho

B

chl (lake)

va. St

af-urban

.194 400 297

-

.024

.073

0.318

0

.269

0.367

SP

0.416

F

0.220

¢

17

٠

122

7

₹8,

af-urban

-pspr (laké) 0.563 |Hv 0.514 | 0.465 |

pspr (]	lake)	V8.	af-ulak:	E -	. '		1		/
0.003	HAA							•	
0.014	 					۰.			-
0.465	Mo								
0.416									
0.367	Sh								
0.318	-			Bo					
0.269		•					· . ·		
0.220	St								
0.171	Ce			•			Ho	• •	-
0.122	1 · .			•					
0.073	Ca	L SC					. 1		Su
0.024	[E1	•						
-0.025	IrWi		· · ·						
-0.074	ŀ								
-0.123	Fa			•					
-0.172	Cu				•		· .	· .	
-0.221	Pa.								
-0.270	1			Sw					
-0.319	1 · · ·								
-0.368	Ha	<u>.</u>		·					
Ō.	.000	<u> </u>	.074	0.147	. n	.221	0.20).368

r-chl (lake) vs. af-ulakf 1.400|St 1.297 1.194 1.092 0.9891 Ca 0.886 |Sh 0.784 0.681 0.579 0.476| 0.3731 0.271 Mo 0.168 BoSw 0.065 FallyHa -0.037 | Cur -0.140 |Ir Но -0.242 | Pa El -0.345 -0.448! SC -0.550 Su 0.000 0.074 0.147 0.221 0.295 0.368 ·.

Ho Ir 뿽 င္မ 0.143 H

Sh

Fa 5 .

.073 .171 122 SCSu င္ပ

-0.123 -0.025 -0.074 -024

-0.172 C^R Pa

-0.270

ŝ

.220 .269

ŝ

0.367 0.465 0.416 0 .318

-pspr (

(lake)

¥8.

aff-

wet1

Ψ¥

0.514

K

.

0 .0	-0.448	-0.242	-0.037 -0.140	0.065	0.168 2	0.271	0.476	0.579	0.681	0.886	1.0921	1.194	1.297	r-chl (lak			0.0	-0.368	-0.270 S	-0.172	-0.123	-0.025	0.0/3	0.122	0.220	0.269	0.367	0.465	0.563	r-pspr (la
660° 0 090		- El Pa	G	Fa Hv	8	Mo							•	ce) vs. ff-mixd		. [.]	60 0.099			ъđ ПО	Fa		R					Мо	Ηv	ke) vs. ff-mix
0.138	SC		T T T									· .			•		0.138					IrWi	sc	2						Ð,
0.178				Ha	Во				·					A 7			0.178	Ha		-				-	St		я 5			
0_217	· ·		Ho		•								۰.				0.217					· .		Ę			·			
n_956	នព									Sh	Ca			· · ·	•		0.256						Su Ca	i đ	3		Sh	·		

.

. • ·

.

· · · . .

r-pspr (lake) vs. lf-agr 0.563 Ηv 0 4514 0.465 Mo 0.416 Sh 0.367 0.318 Bo 0.269 0.220 St 0.1711 Ce Ho 0,.1221 Ca 0.073 Su SC 0.024 E Wi -0.025 IT -0_0741 -0.123 | -0.172 | Fa . Cu -0.221 Pa -0.270 Sw -0.319 -0.368 Ha 0.315 0.696 0.062 0.189 0.442 0.569

-0.037 | Cu -0.140 Ho Ir -0.2421 Pa E1 -0.3451 -0.448 SC -0.550 Su 0.118 0.247 0.311 0.054 0.183 0.376

. . r-pspr (lake) vs. lf-septic 0.5631 Ø.514 0.4651 Мо 0.416 0.367 |Sh 0.318 Bo 0.269 0.220 St 0.171 Ce Ho 0.1221 0.073 SuCa SC 0.0241 R1 -0.025| Wi Ir -0.074 -0.123 Fa -0.1721 Cu. -0.221 Pa -0.270 Sw -0.319 -0.368 Ha 0.000 . . 0.021 0.042 0.063 0.084 0.105 vs. 1f-septic r-chl (lake) 1.400[St 1.297 1.194 1.0921 0.9891 Ca 0.886 |Sh 0.7841 0.681 0.5791 0.476 0.3731 Mo 0.271 Bo 0.168 Sw Ha 0,0651 Fa Ηv -0.037 CT Ir Но -0.140 E1 -0.242 Pa -0.3451 SC -0.448 -0.5501 Su 0.042 0.084 0.105 0.021 0.063 0.000

r-pspr (lake)	vs. lf-int	er			. '	
0.563 Hv			·		• .	
0.514	•			· · ·	•	
0.465	•		Mo			
0.416						
0.367					Sh	
0.318	Bo					
0.269			. '			
0.220 St	•	1.				
0.171 Ce Ho	5 1					
0.122						
0.073 Su	SC	Ca				
0.024 [<u>E1</u>	· · · · · · · · · · · · · · · · · · ·		-	· · · · ·	········	
-0.025 Wi				Ir		
-0.074						
-0.123		Fa	•			
-0.172 Cu	· · · · ·					
-0.221	e de la companya de l Recentra de la companya de la company	Pa		· · ·		
-0.270 Sw	5. S. J.				•	*
-0.319					: :	
-0.368	Ha					
0.000	0.114	0.228	0.942	0.456	0.570	

r-chl (lake) vs. 1f-inter 1.400 |St 1.297 1.194 1.092 0.9891 Ca Sh 0.886| 0.7841 0.681 0.579 0.476| 0.373| 0.271| Mo 0.1681 Bo Sw 0.0651 Fa Ħv Ha -0.037 Ga--0.140 Ir Ho -0.242|E1 Pa -0.345 -0.448 SC + 0.000 0.114 0.228 0.342 0.456 0.570

0.563 Hv. 0.111 0.5144 0.4651 Mo 0.4651 No 0.4164 0.3671 Sh 0.3184 0.3184	0.563	1					
0.514 0.4451 No 0.446 0.4461 No 0.367 Sh 0.367 Sh 0.318 No 0.269 No 0.220 St 0.711 Ce Ho 0.122 No 0.024 El 0.073 Su 0.024 El 0.074 Fa 0.172 Cu 0.027 Sw 0.270 Sw 0.270 Sw 0.319 No 0.319 No 0.319 No 0.368 Ha 56.810 518.206 979.602 1441.000 1902.390 2363.790 Ca 0.886 Sh 0.784 Sh 0.784 Sh 0.579 Ca 0.886 Sh 0.784 Sh 0.579 Ca 0.886 Sh 0.784 Sh 0.579 Sw 0.271 Mo 0.579 Sw 0.271 Mo 0.271 Mo 0.271 Mo 0.373 Sw 0.373 Su 0.373 Su 0.375 Su 0.375 Su 0.375 Su 0.375 Su 0.375 Su 0.375 Su 0			Hw.	-			
0.465 No 0.466 No 0.367 Sh 0.318 No 0.318 No 0.318 No 0.318 No 0.318 No 0.329 No 0.201 St 0.171 Ce Ec 0.073 Su SC Ca 0.024 E1 -0.025 Tr Wi -0.025 Tr Wi -0.025 No 0.021 Fa -0.172 Cu -0.270 Sw -0.319 No -0.319 No -0.368 Ha 56.810 S18.206 979.602 1441.000 1902.390 2363.790 Ca 0.989 Ca 0.989 Ca 0.989 Ca 0.986 Sh 0.774 Ca 0.368 Sw 0.681 Osh 0.774 No 0.377 Osh 0.377 Osh 0.377 Osh 0.378 No 0.378 No 0.378 No 0.373 No 0.37	0.514						
0.416 0.367 0.318 0.318 0.318 0.269 0.220 [st 0.171 Ce Ho 0.122 0.073 Su SC Ca 0.024 E1 -0.074 -0.074 -0.123 Fa -0.172 [Cu -0.270 Sw -0.319 -0.368 Ha +	0.465	i	Mo			·	
0.367 Sh 0.318	0.416		100				
0.318 Du Be 0.220 St	0.367	i i	SP	· · ·			
0.269 0.220 [St 0.171 Ce Ho 0.122 0.073 Su SC Ca 0.024 E1 -0.025 Ir Wi -0.074 -0.172 Cu -0.270 Sw -0.319 -0.368 Ha -0.368 Ha -0.368 Ha -0.368 Ha -0.368 Ha -0.368 Ha -0.368 Sh -0.368 Sh -0.379 0.379 0.476 0.373 0.476 0.373 0.476 0.373 0.476 0.373 0.476 0.476 0.373 0.476 0.476 0.373 0.476 0.373 0.476 0.373 0.476 0.373 0.476 0.373 0.476 0.373 0.476 0.370 0.476 0.373 0.271 Mo 0.168 Sw -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 0.448 SC -0.500 Su	0.318		. 04	50 A			P-
0.220 St 0.171 Ce Ho 0.1221 0.073 Su SC Ca 0.024 <u>E1</u> -0.025 <u>Tr W1</u> -0.074 -0.123 <u>Fa</u> -0.172 Cu -0.221 <u>Fa</u> -0.270 <u>Sw</u> -0.319 -0.368 <u>Ha</u> <u>ta</u> 56.810 518.206 979.602 1441.000 1902.390 2363.790	0.269		· · ·				DO .
0.171 Ce Ho 0.122 0.073 Su SC Ca 0.024 E1 -0.025 Tr Wi -0.025 Tr Wi -0.122 Fa -0.172 Cu -0.221 Fa -0.270 Sw -0.368 Ha -0.368 Ha -0.	0.220	St				• .	
0.122 0.073 Su SC Ca 0.024 E1 -0.025 Ir Wi -0.074 -0.123 Fa -0.127 Cu -0.221 Pa -0.270 Sw -0.319 -0.368 Ha $\frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$	0.171	Ce	Ho				
0.073 Su SC Ca 0.024 El -0.025 Tr Wi -0.074 -0.123 Fa -0.172 Cu -0.270 Sw -0.319 - -0.368 Ha 	0.122	i					
0.024 0.025 Ir WI 0.025 0.74 0.123 Fa 0.172 [Cu 0.221] Pa 0.270 Sw 0.319 0.368] Ha 56.810 518.206 979.602 1441.000 1902.390 2363.790 ch1 (lake) vs. sarea 1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 Ca 0.373 0.271 Mo 0.168 Sw 0.025 Ha Hv Fa 0.037 Cu 0.037 Cu 0.037 Cu 0.345 Sc 0.2448 SC 0.345 Sc 0.346 Sh 0.272 ElPa 0.345 Sc 0.345 Sc 0.350 Su	0.073	Su	•	SC	Ce		1.1
-0.025 Ir Wi -0.074 -0.123 Fa -0.172 [Cu -0.220 Sw -0.319 -0.368 Ha -0.368 Ha -0.368 Ha -0.368 Ha -0.368 Ha -0.368 Ha -0.368 Sh -0.386 Sh -0.386 Sh -0.386 Sh -0.386 Sh -0.386 Sh -0.386 Sh -0.379 -0.476 O -0.371 Mo -0.681 Sw -0.373 Sw -0.373 Sw -0.373 Sw -0.375 Sw -0.375 Sw -0.345	0.024	E	1 .	· ·			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.025	I IF	Wi				
-0.123 Fa -0.172 [Cu -0.221 Pa -0.270 Sw -0.319] -0.368 Ha 56.810 518.206 979.602 1441.000 1902.390 2363.790 ch1 (lake) vs. sarea 1.400 [st 1.297] 1.1941 1.092] 0.989 Ca 0.886 Sh 0.7841 0.681 Sw 0.476 Ca 0.373 Ca 0.476 Ca 0.373 Ca 0.476 Ca 0	-0.074	.1					
-0.172 Cu -0.221 Pa -0.270 Sw -0.319 -0.368 Ha 56.810 518.206 979.602 1441.000 1902.390 2363.790 ch1 (lake) vs. sarea 1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hv Fa -0.037 Cu -0.140 Ir Ho -0.242 ElPa -0.345 -0.345 -0.448 SC -0.550 Su	-0.123	1 .	Fa :				
-0.221 Pa -0.270 Sw -0.3191 -0.368 Ha 56.810 518.206 979.602 1441.000 1902.390 2363.790 ch1 (lake) vs. sarea 1.400 st 1.297 1.194 1.092 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw 0.665 Ha Hy Fa -0.037 cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.345 -0.448 SC -0.550 Su	-0.172	iCu					
-0.270 Sw -0.319 -0.368 Ha 56.810 518.206 979.602 1441.000 1902.390 2363.790 ch1 (lake) vs. sarea 1.400 st 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 ElPa -0.345 -0.448 SC -0.550 Su	-0.221	l P	4			· ·	
-0.319] -0.368 Ha 56.810 518.206 979.602 1441.000 1902.390 2363.790 ch1 (lake) vs. sarea 1.400 st 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.65 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su	-0.270	Sw					
-0.368 Ha 56.810 518.206 979.602 1441.000 1902.390 2363.790 ch1 (lake) vs. sarea 1.400 st 1.297 1.194 1.092 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.448 SC -0.550 Su	-0.319	4	1 A.				
56.810 518.206 979.602 1441.000 1902.390 2363.790 ch1 (lake) vs. sarea 1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.476 0.733 0.271 Mo 0.168 Sw 0.065 Ha Hv <fa< td=""> -0.037 Cu -0.140 Ir -0.242 E1Pa -0.345 -0.448 -0.448 SC -0.550 Su</fa<>	-0.368	Ha	<i>.</i>		- ·		
ch1 (lake) vs. sarea 1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su		·			· · · · · · · ·		
chi (lake) vs. sarea 1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su	n in sam				• • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su	chl (la	ika) v		·····			
1.297 1.194 1.092 0.989 0.989 0.989 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 ElPa -0.345 -0.448 SC -0.550 Su 	1.400		5. 3MLEM				· · · · · · · · · · · · · · · · · · ·
1.194 1.092 0.989 0.989 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.345 -0.448 SC -0.550 Su -0.70 -0.100 Su -0.70		St	s, sarea				· .
1.092 0.989 0.989 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 ElPa -0.345 -0.345 -0.448 SC -0.550 Su 	1.297	St	8, 34(e4				· · · · · · · · · · · · · · · · · · ·
0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su	1.297	St	s, sarea				
0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su -0.550 Su	1.297 1.194 1.092	St	8, 34(44				· · · · · · · · · · · · · · · · · · ·
0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su -0.550 Su	1.297 1.194 1.092 0.989	St	B. 34[#4		Ca		
0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.448 SC -0.550 Su	1.297 1.194 1.092 0.989 0.886	St	s. sarea		Ca		· · · · · · · · · · · · · · · · · · ·
0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 CW -0.140 Ir Ho -0.242 ElPa -0.345 -0.448 SC -0.448 SC -0.550 Su	1.297 1.194 1.092 0.989 0.886 0.784	St	Sh		Ca		
0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 ElPa -0.345 -0.448 SC -0.550 Su -0.550 Su	1.297 1.194 1.092 0.989 0.886 0.784 0.681	St	Sh		Ca		
0.373 0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.448 SC -0.550 Su -0.550 Su	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579	St	Sh		Са		
0.271 Mo 0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su -0.550 Su	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476	St	Sh		Ca		
0.168 Sw Bo 0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 ElPa -0.345 -0.448 SC -0.550 Su -0.550 Su	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373	St	s. sarea		Ca		
0.065 Ha Hy Fa -0.037 Cu -0.140 Ir Ho -0.242 ElPa -0.345 -0.448 SC -0.550 Su -0.550 Su	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271	St	Sh Mo	·	Ca		
-0.037 Cu -0.140 Ir Ho -0.242 ElPa -0.345 -0.448 SC -0.550 Su +	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271 0.168	St	Sh Mo		Ca		Во
-0.140 Ir Ho -0.242 E1Pa -0.345 -0.448 SC -0.550 Su	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271 0.168 0.065	St Sw Ha	Sh Mo Hv Fa		Ca		Во
-0.242 ElPa -0.345 -0.448 SC -0.550 Su +	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271 0.168 0.065 -0.037	St St Ha	Sh Mo Hv Fa		Ca		Во
-0.345 -0.448 SC -0.550 Su +	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271 0.168 0.065 -0.037 -0.140	St Ha Cu Ir	Sh Mo Hv Fa Ho		Ca		Во
-0.448 SC -0.550 Su +	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271 0.168 0.065 -0.037 -0.140 -0.242	St Ha Cu Ir E1	Sh Sh Mo Hv Fa Ho Pa		Ca		Во
-0.550 Su	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271 0.168 0.065 -0.037 -0.140 -0.242 -0.345	St St Ha Cu Ir E1	Sh Mo Hv Fa Ho Pa		Ca		Bo
	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271 0.168 0.065 -0.037 -0.140 -0.242 -0.345 -0.448	St St Ha Cu Ir E1	Sh Sh Hv Fa Ho Pa	SC	Ca		Bo
	1.297 1.194 1.092 0.989 0.886 0.784 0.681 0.579 0.476 0.373 0.271 0.168 0.065 -0.037 -0.140 -0.242 -0.345 -0.448 -0.550	St Ha CU Ir E1 Su	No Mo Hv Fa Ho Pa	SC	Ca		Во

				3 		
-0.140 -0.242 -0.345 -0.448	-0 037	1.400 1.297 1.194 0.886 0.784 0.681	1. r-ch1 (1	-0.025 -0.074 -0.172 -0.221 -0.270 -0.319	0.416 0.416 0.367 0.269 0.220 0.220 0.171 0.171 0.172 0.073 0.073	r-pspr (1 0.5631 0.5141
SC SC	HI P	۵ ۵	034 1.367 ike) vs. log(Ë E	Ce CaSC	ake) vs. log(
Но	Bo Ho Fa		1.700 (qs)	F a Wi	ж Ж S	(q.s)
부성	Η	8 8 8	2.034	Cu Ir	с, С,	Ħ
්ය හ	S A		2.367 2.	S. V.		

0	-0.550	-0,448	-0.345	-0.242	-0.140	-0.037	0.065	0.168	0.271	0.373	0.476	0.579	0.681	0.784	0.886	686*0	1.092	1.194	1.297	r-chl (1		0	-0.368	-0.319	-0.270	-0.221	-0.172	-0.123	-0074	-0.025	0.024	0.122	0.171	0.540
-460	- Su	ISC			Ho			8		- <u>-</u>	. <u> </u>		-	÷	-	<u> </u>	<u> </u>	<u> </u>	-	ake)	•	.460		-				-		<u> </u>			Ho	
0.504													•					-		vs. runoff		0 - 504				•			• •			. X 1. j		
0.548				;			HvHa		Мо									·			•	0.548	Ha	-			•				,	• •		
0.592				ElPa	Ir	cu		Sw							Sh				Ç	*	: : :	0.592			Sw	Pa	CL	•		Wi Ir	R.		Ce	
0.636				•	•																· · ·	0.636				•		•			· ·			
0.680	•	-					Fa									C ₄						0.680		•			-	Fa			C A	3		

(lake) vs. runoff

1.1

÷4,

臣

Mo

)÷

ЧS

н

-pspr

0.563

0

.416

0

0.318 Bo

13. . . .

12

. "**?**

· · ·

1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.209 St 0.220 St 0.171 Ce Ho 0.122 0 0.073 Su Ca SC 0.024 El -0.025 Wi Ir -0.074 0 -0.123 Fa -0.172 Cu -0.221 Pa -0.270 Sw -0.319 0 -0.368 Ha ++++++++++++++++++++++++++++++++++
0.2201 St 0.171 Ce Ho 0.1221 0.073 Su Ca SC 0.024 El -0.025 Wi Ir -0.074 -0.123 Fa -0.172 Cu -0.221 Pa -0.270 Sw -0.319 -0.368 Ha ++++++++++++++++++++++++++++++++++
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
-0.025 Wi Ir -0.074 -0.123 Fa -0.172 Cu -0.221 Pa -0.270 Sw -0.319 -0.368 Ha -0.368 Ha -0.309 1.503 1.916 2.329 2.742 3.155
-0.0741 -0.123 Fa -0.1721 Cu -0.221 Pa -0.270 Sw -0.319 -0.368 Ha 1.090 1.503 1.916 2.329 2.742 3.155
-0.123 Fa -0.172 Cu -0.221 Pa -0.270 Sw -0.319 -0.368 Ha +
-0.1/21 -0.221 Pa -0.270 Sw -0.319 -0.368 Ha +
-0.221 Pa -0.270 Sw -0.319 -0.368 Ha +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.090 1.503 1.916 2.329 2.742 3.155
1.400 St
1.297
1.297 1.194
1.297 1.194 1.092
1.297 1.194 1.092 0.989 Ca
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Ko
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Hy HaFa
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Hy HaFa -0.037 Cu
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw 0.065 Hv HaFa -0.037 Cu Ho
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw 0.065 Hy HaFa -0.037 Cu Ho -0.242 El Pa
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw 0.065 Hv HaFa -0.037 Cu -0.140 Ir Ho -0.242 E1 Pa -0.345
1.297 1.194 1.092 0.989 0.386 0.784 0.681 0.784 0.681 0.579 0.476 0.373 0.271 Mo 0.168 Sw Bo 0.065 Hv HaFa -0.037 Cu Ho -0.242 El Pa -0.345 -0.448 SC
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373 0.271 V
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.272
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.3731
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476 0.373
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.476
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681 0.579
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784 0.681
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784
1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca
1.297 1.194 1.092 0.989 Ca
1.297 1.194 1.092 0.989 Ca
1.297 1.194 1.092 0.989 Ca
1.297 1.194 1.092 0.989 Ca
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca 0.886 Sh
1.297 1.194 1.092 0.989 Ca
1.297 1.194 1.092
1.2971
1 2071
1.400 St

5

-nanr (lake) WS. 73				
0.563		•	• •		Hv
0.514			5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		a da ser a ser
0.4651	Mo	•	· · ·		
0.4161					
0 367 1	SP.				
0.3071	54	Ro		· .	
0.260	. *	ÐU			•
0.2091	and the second sec			14 - E	· · ·
0.220 SE					
0.1711 0	e	Ho	•		• •
0.122		• •			
0.073	Ca	SC		Su	
0.024	E1	·	· · · · · · · · · · · · · · · · · · ·		the state of the second
-0.025 Wi	Ir				
-0.074		· .	· · ·		··· · ·
-0.123	Fa				·
-0.172	Cu		•	· · ·	
-0.221		Pa			•
-0.270					Sar
-0.3101		·			
-0.JIJ	т. Т.			· .	
-0-2001					
2.400	10.760	19.120	27.480	35.840	44.200

pspr (lake) VS. zmean 0.563 / Ηv 0.514 0.465 Mo 0.416 0.367 : Sh 0.318 Bo 0.269 0.220| St 0.1711 Ce Hο 0.122 0.073 Ca SC Su

r

0.024	El				
0.025 Wi	Ir				
0.074					
0.123	· ·	Fa			
0.172	Cu			· ·	٠.
0.221	_	Pa			
0.270					Sw
0.319					
0.368	Ha				
1.019	4.995	8.971	12.948	16.924	20.900
					-

• .

h1 (1ake) vs. zhyp 1.400 St 1.297 1.192 1.092	h1 (lake) vs. zhyp 1.400 St 1.297 1.297 1.194 1.092 Ca 0.989 Ca 0.886 Sh 0.476 Sh 0.476 Bo 0.476 Bo 0.476 St 0.476 Bo 0.476 St 0.476 Bo 0.476 Bo 0.476 St 0.476 Bo 0.476 St 0.476 Bo 0.476 St 0.448 Fa 0.448 St 0.4448 St 0.4448 St	16.400	13.120	9 .840	6.560	3 . 280	0.000
h1 (lake) vs. zhyp 1.400 St 1.297 1.297 1.194 1.092	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.092 1.092 1.092 0.886 Sh 0.886 Sh 0.886 Sh 0.476 0.476 0.271 Mo 0.271 Mo 0.271 Mo 0.271 Ha Fa 0.168 Ha 1r Ho 0.242 E1 Fa SC SC	F.	S				0.550
h1 (lake) vs. zhyp 1.400 St 1.297 1.297 1.194 1.092 1.093 Ca 0.886 Sh 0.886 Sh 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.476 0.271 Mo 0.271 Mo 0.271 1.194 1.194 1.194 Sw Hy 0.037 Cu 1.194 1.194 1.194 Sw Hy 0.271 1.194 1.19	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.092 1.092 0.886 Sh 0.886 Sh 0.373 0.373 0.373 0.476 1.194 1.195 1.194 1		•		SC		0.4481
h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.093 Ca Sh 0.886 Sh 0.886 Sh 0.476 0.476 1.12	h1 (lake) vs. zhyp 1.400 St 1.297 1.297 1.194 1.195 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 0.989 Ca 0.886 Sh 0.681 0.681 0.579 0.579 0.373 Mo 0.271 Mo 0.373 0.0476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476 1.194 1.194 1.194 1.195 1.195 1.196 1.196 1.197 1.198 1.198						0.345
h1 (1ake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.092 1.092 0.989 Ca 0.886 Sh 0.886 Sh 0.886 Sh 0.579 0.579 0.579 0.476 0.476 0.476 0.373 Mo 0.271 Mo 0.271 Mo 0.271 Mo 0.271 Mo 0.373 0.406 Ha Fa Hy 0.037 Cu 1.7 Ho	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 0.989 Ca 0.989 Ca 0.886 Sh 0.886 Sh 0.681 0.681 0.579 0.476 0.373 Mo 0.271 Mo 0.271 Mo 0.375 Cu 1.194 1.194 1.195 1.194 1.1					Pa	0.242 E1
h1 (1ake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.092 1.092 0.989 Ca 0.886 Sh 0.886 Sh 0.681 0.681 0.681 0.476 0.373 0.373 0.271 Mo 0.271 Mo 0.065 Ha Fa Hy	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.092 0.989 Ca 0.989 Ca 0.886 Sh 0.681 0.681 0.579 0.579 0.476 0.373 Mo 0.271 Mo 0.271 Mo 0.168 Sw 0.037 Cu			•		Ir Ho	0.140
h1 (1ake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.092 1.092 0.386 Sh 0.476 0.476 0.373 0.373 Mo 0.271 Mo 0.476 0.476	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 0.989 Ca 0.886 Sh 0.681 0.681 0.681 0.681 0.476 0.373 Mo 0.271 Mo 0.168 Ha Fa						0.037 Cu
h1 (lake) vs. zhyp 1.400 St 1.297 1.297 1.194 1.092 1.092 1.092 0.989 Ca 0.886 Sh 0.886 Sh 0.579 0.579 0.476 0.476 0.373 Mo Bo Sw	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.098 0.989 0.886 Sh 0.886 Sh 0.681 0.681 0.681 0.681 0.579 0.476 0.476 0.373 Mo Bo	Hv				a Fa	0.065 H
h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.098 Ca 0.989 Ca 0.886 Sh 0.886 Sh 0.579 0.476 0.476 0.271 Mo	h1 (lake) vs. zhyp 1.400 St 1.297 1.297 1.092 1.092 1.098 Ca 0.886 Sh 0.886 Sh 0.579 0.476 0.476 0.271 Mo	SW				В	0.168
h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.093 1.095 1.095 1.095 1.097 1.097	h1 (1ake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.098 Ca 0.989 Ca 0.886 Sh 0.784 0.681 0.579 0.579 0.373	·				Mo	0.271
h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.194 1.092 1.092 1.092 1.092 0.989 Ca 0.886 Sh 0.886 Sh 0.579 0.476	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.098 Ca 0.989 Ca 0.886 Sh 0.886 Sh 0.579 0.476					·	0.373
h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.092 0.989 Ca 0.886 Sh 0.784 0.579	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.098 Ca 0.886 Sh 0.886 Sh 0.579	•				•	0.476
h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 1.092 0.989 Ca 0.386 Sh 0.784 0.681	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.0989 Ca 0.886 Sh 0.784 0.681				•		0.579
hl (lake) vs. zhyp 1.400 St 1.297 1.297 1.194 1.092 1.092 0.989 Ca 0.886 Sh 0.784	hl (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 0.989 Ca 0.886 Sh 0.784						0.681
hl (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 1.092 0.989 Ca 0.886 Sh	hl (lake) vs. zhyp 1.400 st 1.297 1.194 1.092 0.989 Ca 0.886 Sh						0.784
hl (lake) vs. zhyp 1.400 St 1.297 1.194 1.194 1.092 0.989 Ca	hl (lake) vs. zhyp 1.400 St 1.297 1.194 1.092 0.989 Ca					Ţ	0.8861 8
hl (lake) vs. zhyp 1.400 St 1.297 1.194 1.092	h1 (lake) vs. zhyp 1.400 St 1.297 1.194 1.092						0.989 Ca
hl (lake) vs. zhyp 1.400 St 1.297 1.194	h1 (lake) vs. zhyp 1.400 St 1.297 1.194		·				1.092
hl (lake) vs. zhyp 1.400 St 1.297	hl (lake) vs. zhyp 1.400 St 1.297				• •		1.194
hl (lake) vs. zhyp 1.400 St	hl (lake) vs. zhyp 1.400 St	-	• •				1.2971
hl (lake) vs. zhyp	hl (lake) vs. zhyp	·	-				1.400 St
		•			-	vs. zhyp	hl (lake)

-pspr (1 0.563 0.514 0.465 -0.368 Ŷ -0.172 9 0.220 |St 0.171 |Ce 0.318 0.416 Ò 0.073 | 0.024 | 0.025 | .074 1.122 ۰ 319 270 ទ 0.000 AB 1 Ce င္မ Ha ŝ 똜 H 3.280 Pa Fa R 뭥 ٠ S 3 6.560 9.840 13.120 Su 16.400 S¥ 쀽

ŋ,

(lake) ¥8. zhyp