VARIABILITY OF TROPHIC STATE INDICATORS IN VERMONT LAKES AND IMPLICATIONS FOR LEAP ERROR ANALYSES

prepared for

Vermont Agency of Environmental Conservation Water Quality Division Lakes Program Montpelier, Vermont

by i

William W. Walker, Jr. Environmental Engineer 1127 Lowell Road Concord, MA 01742 617-369-8061

August 1983

This report develops refined estimates of LEAP error terms, based upon the general approach outlined previously (Walker, W.W., "Structure and Calibration of an Error Analysis Framework for the Vermont Lake Eutrophication Analysis Procedure", 1982). The major refinement incorporated below is consideration of the effects of within-year and among-year variability in observed lake water quality on the accuracies of observed mean values. Results provide a useful framework for designing monitoring programs as well as a basis for estimation of LEAP model error terms.

Lay monitoring data from the 98 STORET stations listed in the Appendix have been used as a basis for the analysis. Since variations among stations within a given lake would depend upon site-specific characteristics (morphometry, nutrient loading distributions, stations locations, etc.), each station is treated separately below. This permits a focus on temporal variance components. LEAP is designed to predict long-term average conditions and temporal variability imposes limitations on the accuracy of observed mean values derived from limited sampling data.

Table 1 presents results of nested analyses of variance for spring total P, summer chlorophyll-a, and summer transparency. The conceptual model described previously divides measurement variance into three components: (1) among lakes (stations); (2) among years, within lakes; and (3) among samples, within years. Because spring phosphorus measurements were generally conducted only once per year, it is impossible to distinguish components (2) and (3) and they are lumped in Table 1. Within-year variations in phosphorus are treated separately below. Two sets of ANOVA's are given in Table 1. One uses uses all non-missing observations for each variable and examines all three variance components. The second is based upon station-year means and includes only station-years with non-missing values for phosphorus, chlorophyll-a, and transprency; this permits assessment of covariance components (Table 2).

The analysis indicates that among-lake (or among-station) variance dominates all three measurements and accounts for 73%, 56%, and 76% of

-1-

the total observed variance in phosphorus, chlorophyll, and transparency when all data are considered. The among-sample variance component is strongest in the case of chlorophyll-a (.19 or 33%); this reflects seasonal variations in algal populations, as well as sampling and analytical errors, and indicates, for example, that an average of 19 samples per summer would be required to estimate a yearly-mean value to within a coefficient of variation of 10%. Diagnostic plots indicate that the among-sample standard deviation in log(chlorophyll) increases with mean chlorophyll-a level from about .38 to .55; while this may reflect a tendancy for algal populations to be more variable in more eutrophic systems, the pooled estimate (.44) is adequate for the present purposes. Covariance among the three variables is generally stronger among stations than among years (Table 2). The year-to-year component is more strongly influenced by measurement and sampling errors, which would not be expected to correlate as strongly across variables. Another possible factor is that wet years may tend to have higher phosphorus levels (because of increased runoff) but lower chlorophyll concentrations (because of lower light intensities and temperatures).

Limited data from four lakes are available to estimate within-year variance in spring phosphorus concentrations (Table 3). Based upon the average coefficient of variation, a pooled estimate for the within-year component is .063 (natural log scales) and accounts for 66% of the year/sample variance component estimated in Table 1.

Table 4 summarizes the estimated variance components for each variable and computes estimated variances, coefficients of variation, and 90% confidence factors for long-term means of each variable as a function of monitoring years. The within-year sampling regime (m) corresponds approximately to the lay monitoring design (1 phosphorus, 12 chlorophyll, and 12 secchi measurements per year). The variance components and formula can be used to assess alternative sampling designs. Generally, the variance in the long-term mean is greatest for phosphorus because only one sample is taken per year and the within-year variance component is appreciable. Increasing within-year sampling frequency (even to 2 samples/year) may be cost-effective for determining

-2-

long-term means in spring phosphorus.

As shown in Table 5, a portion of the year-to-year variance in each measurement is not random, but associated with specific years, i.e., the yearly effects are correlated across stations. Fixed yearly effects are statistically significant for each variable and account for a total of 23.1%, 3.3%, and 2.0% of the total within-station variance of phosphorus, chlorophyll, and transparency. They are of practical significance only in the case of phosphorus. Duncan's Multiple Range Test applied to yearly means suggests an increasing trend in phosphorus ranging from a mean of 8.2 in 1979 to 12.3 in 1982. Except for the slightly lower chlorophyll-a mean in 1979 (3.82 vs. mean of 4.10 for other years), the apparent trend in phosphorus is not correlated with trends in the other measurements.

Applied to the total estimated within-station phosphorus variance component of .095 (V(Y) + V(W) in Table 4), the fixed yearly effects account for 23.1% or .022; this, in turn, accounts for 68.8% of the estimated among-year variance component for phosphorus (.032). Thus, about two thirds of the year-to-year variance in spring phosphorus during these four years was not random but associated with specific years. This suggests a deterministic component which may be related to hydrologic or climatologic variations which influence all lakes, changes in laboratory or sampling procedures, or actual trends in concentration attributed to increases in nutrient loadings. Additional analysis (particularly vs. streamflow data) may shed additional light on the the sources of these variations. The non-random nature of the year-to-year phosphorus variations raises a question, however, as to the applicability of the estimated variance components in future years and warrants continued study. In applying these results to estimate error terms for future LEAP applications, we are assuming the the lake conditions and sampling procedures in 1979-82 period were reasonably representative.

The above results can be used to estimate the model and data error components of LEAP submodels following the general approach outlined previously. Table 6 lists the estimated data error variances for the 18

-3-

calibration lakes, based upon the variance components listed in Table 4 and the average monitoring program designs for these lakes. Table 7 estimates the model error variances by difference from the total and data error variance, considering the effects of error propagation through the model network. The total error variances (V(R)) in Table 7 correspond to use of the linear form of the LEAP internal loading function. While they are slightly greater than the errors derived from the exponential function, the linear function is recommended because of sensitivity considerations. Resulting input standard deviations for the model error terms in LEAP are listed in Table 8.

Table 9 lists observed and predicted phosphorus concentrations for LEAP applications to 18 calibration lakes and the 24 additional lakes compiled by VDWR. Monitoring years and estimated variance components are also listed. A major distinction between the first and second set of lakes is apparent in terms of sampling frequency; the latter were generally sampled less frequently and LEAP error variance would be expected to be greater for these lakes. Based upon the error terms estimated above, observations and predictions differ by more than two standard errors for Morey in the first group. Under-prediction in this case is attributed primarily to unusual iron/sulfur chemistry leading to enhanced internal recycling of phosphorus. The effects of unusual outlet hydraulic conditions leading to increased phosphorus loadings may be responsible for the under-prediction in the case of Harvey's Lake (t = 1.99). In the second group of lakes, t values exceed 2.0 in 3 cases. Northeast Developer's "pond" is a relatively new, artificial impoundment and is atypical of the natural lakes used in model development. Internal recycling may be more efficient than predicted in Valley because the lake is permanently stratified. The deviation of Hosmer (t=2.7) is unexplained.

Excluding Northeast Developer's and Valley on the basis of their atypical characteristics, the total error variance in the second set of lakes is .111. This compares well with the average data and model variance components (Vtotal in Table 9) of .108 for the same set of lakes. Calculated error statistics for the second set of lakes support

-4-

the error terms estimated from the calibration lakes and indicate that the general magnitudes of deviations in the second set are expected based upon sampling frequency and model error considerations. The numbers of lakes in the second set with chlorophyll and transparency data are inadequate as a basis to test the error terms for these variables.

One limitation of the error analysis is that the estimated variance components and their effects on the accuracies of lake-mean values assume that the samples are statistically independent. Some autocorrelation would be expected in chlorophyll and transparency samples taken at a weekly frequency. Additional analysis would be required to quantify this and its effects on the error analysis. Generally, serial correlation would tend to become increasingly important at relatively high sampling frequencies and would tend to decrease the value of highfrequency sampling for determination of summer-mean values. Serial correlation is not likely to influence the spring phosphorus estimates, however.

Minor code modifications and procedures to permit consideration of errors in the observed means in LEAP applications have been described previously. By considering both model and data error components, LEAP can be used to identify lakes which have unusual watershed, loading, or internal recycling characteristics leading to high phosphorus levels. These would be logical candidates for further direct investigation. Deviations of Harvey's, Morey, Valley, and Northeast Developer's are all positive and explained independently of the model. More detailed investigation of Hosmer may lead to an explanation for its deviation (also positive). In this sense, LEAP can be used as a screening tool to identify problem lakes.

Another type of application would involve projecting impacts of changes in nutrient loadings and/or land use on water quality. If data are available for the lake in question, the model error terms (means) can be calibrated so that water quality observations and predictions match, similar to the approach demonstrated for Lake Morey. If the model is calibrated in this way, however, the error term standard

-5-

deviations estimated above are no longer valid. Because of the calibration, projections would be more accurate than predicted based upon the error terms. While there is no good way of assessing model error in this type of application, the error analysis routine can still be used to assess the effects of uncertainty in the model input variables on predictions.

Table 1

Results of Nested Analyses of Variance

		A11	Data			Yearly.		
	DOF	MS	VC	Percent	DOF	MS	VC	Percent
Spring Tot	al P							
Total	285	. 451	.456	100.0	134	. 355	.355	100.0
Station	84	1.241	.334	73.1	57	.705	.265	74.0
Year/Sampl	.e 201	.122	.122	26.9	77	•095	.095	26.1
Chlorophyl	1 1-a							
Total	2620	.573	.578	100.0	134	.414	.419	100.0
Station	64	14,288	.324	56.3	57	.875	.345	83.1
Year	87	1.236	.058	10.4	77	.069	069	17.0
Sample	2469	.191	.191	33.3				
Secchi Dep	th							
Total	3521	.276	.281	100.0	134	-255	.255	100.0
Station	93	8.300	.212	76.1	57	.557	.228	90.0
Year	203	.302	.022	8.0	77	.027	.027	10.3
Sample	3225	.045	.045	15.9				

DOF = Degrees of Freedom

MS = Mean Square

VC = Variance Component

Percent = VC as Percent of Total

all components on natural log scales

* including only station-years with non-missing values for all variables

۱۹۱, ۲^۰۷۵ ۲. ۲ دی

Table 2

Nested Analysis of Covariance

	DOF	¥CX	VC-Y	CC-XY	R	Bg	Br
X = Chl-a	Y = Secch	ni -	including	within-year	variat	ions	
Total	1919	.607	.342	251	551	75	41
Station	64	.353	.267	210	685	87	60
Year	87	.056	.027	013	346	69	24
Sample	1768	.198	.049	032	324	50	16
X = Chl-a	¥ = Se	ecchi	(yearly a	neans)			
Total	134	.417	.256	235	720	78	-,56
Station	57	.346	.229	223	794	82	65
Year	77	•071	.027	014	335	61	20
X = Total P	Y = Ch	1 a	(yearly n	means)			
Total	134	.357	.417	.237	.613	1.08	.66
Station	57	.265	.346	.221	.730	1.14	.83
Year	77	.093	.071	.016	.199	.87	.17
X = Total P	Y = Se	ecchi	(yearly n	means)			
Total	134	.357	.256	115	379	85	32
Station	57	.265	.229	120	486	93	45
Year	77	.093	.027	.003	.069	.53	.03

DOF = Degrees of Freedom VC-X, VC-Y = Variance Component of X and Y CC-XY = Covariance Component of X and Y R = Covariance Component Correlation Bg = geometric regression slope Br = regression slope all components on natural log scales

Lake	Year	N	Mean	Standard Deviation	Coef. of Variation
Harveys	79	9	11.7	2.3	.20
Keiser	79	8	5.5	1.9	.34
Morey	79	10	36.2	7.8	•22
Peacham	79	8	6.3	1.6	.25
				mean	.25

Estimated Within-Year Variance Component = .25 = .063 (natural log scales)

2

Ó

Table 4

Samp	le Va	riances	of Means	* Coefs	. of Va	riation	90% Co	nfiden	e Fac.
Year	s P	Chl-a	Secchi	P	Ch1-a	Secchi	Р	Ch1-a	Secchi
1	.0950	.0739	.0258	.3082	.2719	.1605	1.852	1.722	1.378
- 2	.0475	.0370	.0129	.2179	.1922	.1135	1.546	1.469	1.255
3	.0317	.0246	.0086	.1780	.1570	.0926	1.427	1.369	1.204
4	.0238	.0185	.0064	.1541	.1359	.0802	1.361	1.312	1.174
5	.0190	.0148	.0052	.1378	.1216	.0718	1.317	1.275	1.154
6	.0158	.0123	.0043	.1258	.1110	.0655	1.286	1.249	1.140
7	.0136	.0106	.0037	.1165	.1028	.0607	1.262	1.228	1.129
8	.0119	.0092	.0032	.1090	.0961	.0567	1.244	1.212	1.120
9	.0106	.0082	.0029	.1027	.0906	.0535	1.228	1.199	1.113
10	.0095	.0074	.0026	.0975	.0860	.0507	1.215	1.188	1.107

Estimation of Variances in Observed Means as a Function of Sample Years

* natural log scales

•5 Coef. of Variation = Variance

F90 = exp(2 CV)90% Confidence Factor =

Ye/F90 < Y < Ye x F90 at 90% confidence level

Y = actual mean , Ye = estimated mean

Variance of Means Computed from:

V(0) = V(Y)/n + V(W)/(n m)

where,

m

V(0) = variance of observed long-term mean V(Y) = between-year variance component V(W) = within-year variance component n = number of years = number of samples per year Ē Variable P Chl-a Secchi V(Y) .032 .058 .022 V(W) .191 .063 .045 12 12 1

				Table	e >			
Test	for	Fixed	Yearly	Effects	on	Trophic	State	Indicators

	То	tal P	Ch1o	rophy11-a	Tran	sparency
Source	DOF	SS	DOF	SS	DOF	SS
Total	285	24.74	2620	282.27	3521	184.14
Station	84	19.66**	64	172.39**	93	145.57**
Year	3	1.07**	3	3.58**	3	•76**
Error	198	3.56	2553	106.30	3425	37.81
Year/(Error+Year)		23.1%	3.3%			2.0%
Fixed Year	ly Means					
1982		1.090 A*		.,607 A		.661 A
1981		1.035 B		.619 A		.648 B
1980		.955 C		.613 A		.646 B
1979		915 C		.582 B		.652 AB
Range		.180	ین ندن ندق سن جره مک جر	.025		.015
	·					

DOF = degrees of freedom

SS = sum of squares

** Effect significant at p < .01
* Means followed by same letter are not significantly different
at p < .05, based upon Duncan's multiple range test
all statistics on base-10 log scales</pre>

Table 6	
---------	--

Estimated Data Error Components for LEAP Calibration Lakes

Variable	V(Y)	n 	V(W)	n 	V(0)
Spring P	.032	5	.063	1	.019
Mean Chlorophyll-a	•058	4	.191	12	.019
Maximum Chlorophyll-a *	.083	4	-	-	.021
Mean Transparency	.022	4	.045	12	.006
Oxygen Depletion Rate *	.020	2	-	-	.010

V(Y) = year-to-year variance component n = average number sample-years per lake V(W) = within-year variance component m = average number os samples/year V(0) = error variance in mean estimate = V(Y) / n + V(n)/ (n m) * developed previously (Walker ,1982) all variances expressed on natural log scales

Table 7

Model Error Components

Model	Error Term	V(R)	V(0)	V(M)	V(M) Components	
39/40	Spring Phosphorus	.075	.019	•056	.028 (Watershed, 39)	
41	Phosphorus/Chl-a	.197	.019	.178	2 .94 x .056 (Spring P) .129 (P/Ch1-a, 41)	
42	Mean Chl-a/Max Chl-a	.287	.021	•266	2 1.16 x .178 (Mean Chl-a) .026 (Mean/Max Chl-a, 42)	
43	Mean Chl-a/Secchi	.107	.006	.101	2 .65 x .178 (Mean Chl-a) .026 (Mean Chl-a/Secchi, 43)	
44	Phosphorus/HOD	.105	.010	.095	2 .91 x .056 (Spring P) .049 (P/HOD, 44)	
V(R) = total variance of residuals, excluding Star Lake (outlier) for mean and maximum chlorophyll-a						
V(0)	average observed data	error	compos	nent (Ta	ble ?)	
V(M) = estimated total model error = $V(R) - V(0)$						
V(M) Components = breakdown of model error, sum = $V(M)$						
A11 v	ariances on natural log	scale				

Table &

Summary of Calibrated Error Terms for LEAP Input

Variable	Mean	Standard Deviation
39 Watershed Model Error	1.0	.17
40 Retention Model Error	10	.17
41 P/Ch1-a Model Error	1.0	.36
42 Mean Chl-a/Max Chl-a Model Error	1.0	.16
43 Mean Chl-a/Secchi Model Error	1.0	.16
44 Phosphorus/HOD Model Error	1.0	.21
	ی میں ویل میں ورب تقل	ي مي

Notes:

Standard Deviations estimated from square roots of variance terms estimated in Table ?;

Standard Deviations of input variables 1-38 should be set to 0.0.

orine P	
hosphorus	Table 9
Residua	

	lard	ears 056 n 2 stand omponents	,095 / Y /(0) + . »r devia more tha	d P = . ual = V test fo ter by m data	observed f residu otal = 1 otal = 1 odel.and	ance of riance o ot of Vt redictio g both m	ated vari imated vari square ro ons and P onsiderin	V(0) = estim Vtotal = est t = Error / * Observations, c
		~	ոց/ո3) , ոց/ո3)	al log, ral log	(natura P (natur	spring P spring	- Est. ved mean ated mean	Error = Obs. Obs. = obser Est. = estim
*	3.696	0.080	0.024	4	2.214	3.258	1.044	Valley
	-0.433	0.075	0.019	S.	3.297	3.178	-0.119	Ticklenaked
×	2.695	0.088	0.032	ω	2.482	3.280	0.798	Hosmer
	-1.167	0.088	0.032	ı	2.910	2.565	-0.345	Paran
*	2.049	0.103	0.048	i ci	2.432	3.091	v. 0.659	Northeast De
	-0 610	0.151	0.095	_, _	2.543	505-20 500-2	-0.40	ралрани
	L.038	0.103	0.048	- 10	2./LU	3 3 2 0 4 0 4 0	-0 434	TLIQYS
	-1.309	0.080	0.024	4 (2.672	2,303	-0,370	Sadawga
	1.764	0.080	0.024	4	2.335	2.833	0.498	Evel1
	0.834	0.088	0.032	w	2.798	3.045	0.247	Derby
	-0.189	0.103	0.048	N †	2.364	2.303	-0.061	Brownington
	0,110	0.121	0.005	i	72001	2-773	0.277	Lower Sunset
	-0.490	0 103		ა -	1 801	2.191		Inwell Invell
	-0.482	0,080	0.024	- +	2.701	2,565	-0.136	Mill-Windsor
	-1.823	0.080	0.024	4	3.080	2.565	-0.515	Runnemede
	0.070	0.103	0.048	2	2.375	2.398	0.023	Colby
	-0.522	0.103	0.048	iə 1	2.807	2.639	-0.168	Lily-Vernon
	-0-802	0,151	0.095	 •-	2.709	2.398	-0.311	Sodom
		0 151 CUL00	0.040	- 1	3.005	1,178	-0.007	Round
	0,433		20.02	ş i.	N 0 0 1	2 .40J	071.0	1000
	1.209	0.103	0.048	N	2.746	3.135	0.389	Harriman
	0.222	0.080	0.024	+	1./40	TTOTT	0.000	
	/80°T-	0.00	610°0	× ں	710.2	1 10 1 1 6.1 / • T	0.043	Subcot
	-1.522	0.075	0.019	ה נה	2.729	2,313	-0,417	Halls Chodow
	-0.059	0.075	0.019	Ui	3.272	3.256	-0.016	Winona
	0.704	0.080	0.024	4	2.420	2,619	0.199	Star
	1.340	0.075	0.019	ι Ο Ι	4.357	4.724	0.367	Shelburne
	0.035		0.019	յու	2.444	2-464	600'0 117.0_	St Cather
*	2.072	0.072	0.016	n 0	2.743	3,299	-0.555	Morey
	0.222	0.075	0.019	Ņ	3.331	3.392	0.061	Iroquois
	0.563	0.075	0.019	U I	2.303	2.457	0.154	Hortonia
	1.089	0.075	0.019	ניט	2_083	2.628	0.545	Harveys
	0440		0 03/	~ (101.5	3.004	-0-197	Fairfield
	-0.680	0.075	610.0	νU	2.684	2.498	-0.1%	FUTELS
	0.549	0.075	0.019	i Ųi	2,690	2.841	0.150	Cedar
	0.239	0.075	0.019	S	2.928	2.994	0.065	Carmi
	0.989	0.075	610.0	5	2.426	2,697	0.271	Bomoseen
	-	Vtotal	V(0)	Years	Ëst.	068.	Error	Lake
		·	iduals	rus Res	Phospho	Spring		

HOHUHUHUM

APPENDIX

STORET Station Codes Used in Analysis

PRIM. SEC. I	BASIN	LAKE
503776 9ARR1 1	LAMOILLE RIVER	ARROWHEAD MT
503777 9ARR2 I	LAMOILLE RIVER	
503778 9ARR3 1	LAMOILLE RIVER	
503779 9ARR4 1	LAMOILLE RIVER	
504813 9AVB1 8	ST. FRANCIS RIVER	AVERILL
504814 9AVB2 8	ST. FRANCIS RIVER	
503105 9BEE1 (CASTLETON RIVER	BEEBE
503117 9BEE2 (CASTLETON RIVER	
503006 9BIG1 1	WALLOOMSAC RIVER	BIG POND
503007 9BIG2 W	WALLOOMSAC RIVER	
503112 9BOM1 (CASTLETON RIVER	BOMOSEEN
503109 9BOM2 (CASTLETON RIVER	
503089 9BUR1 1	HUBBARDTON RIVER	BURR
503118 9BUR2 1	HUBBARDTON RIVER	
503512 9CAR1 1	PIKE RIVER	CARMI
503526 9CAR2 1	PIKE RIVER	
503784 9CAS1	GREENSBORO BROOK	CASPIAN
503787 9CAS2 (GREENSBORO BROOK	
504254 9COL1 1	WEST RIVER	COLE
504255 9COL2 1	WEST RIVER	
504939 9DER1 (CLYDE RIVER	DERBY
504850 9DER2	CLYDE RIVER	
503179 9DUN1 3	LEICESTER RIVER	DUNMORE
503182 9DUN2 1	LEICESTER RIVER	
503180 9DUN3 3	LEICESTER RIVER	
504926 9ECH1	CLYDE RIVER	ECHO
504858 9ECH2	CLYDE RIVER	
503796 9ELM1 1	LAMOILLE RIVER	ELMORE
503797 9ELM2	LAMOILLE RIVER	
503193 9FER1 (OTTER CREEK	FERN
503194 9FER2	OTTER CREEK	
503680 9FRD1	BLACK CREEK	FAIRFIELD
503681 9FRD2	BLACK CREEK	
504533 9FRL1	OMPOMPANOOSUC RIVER	FAIRLEE
504532 9FRL2	OMPOMPANOOSUC RIVER	
503080 9GLE1	OTTER CREEK	GLEN
503079 9GLE2	OTTER CREEK	
503898 9GRE1	KINGSBURY BRANCH	GREENWOOD
503894 9GRE2	KINGSBURY BROOK	
504536 9GR01	WELLS RIVER	GROTON
504537 9GR02	WELLS RIVER	
504702 9HAL1	CONNECTICUT RIVER	HALLS
504703 9HAL2	CONNECTICUT RIVER	
504526 9HAR1	PEACHAM BROOK	HARVEYS
504540 9HAR2	PEACHAM BROOK	
503082 9HOR1	HUBBARDTON RIVER	HORTONIA
503091 9HOR2	HUBBARDTON RIVER	

PRIM.	SEC.	BASIN	LAKE
503507	9IRO1	LAPLATTE RIVER	IROQUOIS
503537	9IRO2	LAPLATTE RIVER	
503508	91R03	LAPLATTE RIVER	
504863	9ISL1	CLYDE RIVER	ISLAND POND
504857	9ISL2	CLYDE RIVER	
504625	9J0E1	JOES BROOK	JOES
504626	9JOE2	JOES BROOK	
504701	9MAI1	PAULS STREAM	MAIDSTONE
504709	9MAI2	PAULS STREAM	
504541	9MAR1	STEVENS RIVER	MARTINS
504529	9MAR2	STEVENS RIVER	
503687	9MET1	MISSISSQUOI RIVER	METCALF
503697	9MET2	MISSISSQUOI RIVER	
504705	9MOR1	CONNECTICUT RIVER	MOREY
504707	9MOR2	CONNECTICUT RIVER	
503895	9NEL1	KINGSBURY BRANCH	NELSON
503897	9NEL2	KINGSBURY BRANCH	•
504153	9NIN1	BLACK RIVER	NINEVAH
504158	9NJ.N2	BLACK RIVER	
504905	9PAR1	ROARING BROOK	PARKER
504908	9PAR2	ROARING BROOK	
503141	9PIN1	OTTAUQUECHEE RIVER	PINNEO
503142	9PIN2	OTTAUQUECHEE RIVER	
503003	9PRN1	WALLOOMSAC RIVER	PARAN
503004	9PRN2	WALLOOMSAC RIVER	·
504356	9RAPI	N. BRANCH DEERFIELD	RAPONDA
504359	9RAP2	N. BRANCH DEERFIELD)
504155	9RESI	BLACK RIVER	RESCUE
504157	9RES2	BLACK RIVER	
504869	9 9SALI	CLYDE RIVER	SALEM
504865	9SAL2	CLYDE RIVER	
504889	9 9 SEYI	ECHO LAKE	SEIMOUR
5048/2	9SEY2	ECHU LAKE	
504913) YSHAI	BARION RIVER	SHADOW
502094	95HA2	BARION KIYER	CIIN OF T
502104	- 00M61	HUBBARDION RIVER	SUNSEI (
502109	- 70002	MILL DIVER	етар "(М ^С
502102	95141	MILL KIVER	STAR JAN
502004) 70184 00701	MILL RIVER	- GART WAT
503094	• 70101 0cmc4	MILL BROOK	- STCK
203110	95102	THE DAVVA	
503039	YVAL1	KINGSBURY BRANCH	ANTER
503900	VYALZ	ZARON DIVER	WIT I OHOURY
504922	SWIL1	DARIUN KIVER Padyon dived	#TRPAARDT
504920	000001 1 201001	THEODIDY DEANER	UCODRIDY
20300/		KINGODUKI DRANGH	HVVDDUAL
50/151	00002	ATTAHOURCUPE DIVED	VOODUARD
504151	. 3NUN1 1 GUAUA	OTTAUQUEVEE NIVED	
204100	7WUW2	. ULIAUQUEUNEE ALVEA	

STRUCTURE AND CALIBRATION OF AN ERROR ANALYSIS FRAMEWORK FOR THE VERMONT LAKE EUTROPHICATION ANALYSIS PROCEDURE

prepared for

Vermont Agency of Environmental Conservation Water Quality Division Lakes Program Montpelier, Vermont

bу

William W. Walker, Jr. Environmental Engineer 1127 Lowell Road Concord, MA 01742 617-369-8061

November 1982

The structure, calibration, and use of the error calculation routine in LEAP are based upon first-order error analysis concepts. An "error" is defined as a "residual", or difference between an observed and predicted lake condition (phosphorus, chlorophyll-a, transparency, or oxygen depletion rate). Figure 1 summarizes the pathways involved in calculating the mean and variance of each lake response variable and residual. Because both the measurement and the model errors tend to be multiplicative and to increase with the corresponding mean estimate, they are best expressed on a logarithmic scale. According to fundamental error analysis concepts, the total residual variance can be partitioned into the following sources:

$$V(R) = V(I) + V(M) + V(0)$$

where,

- V(R) = total residual variance
- V(I) = variance attributed to uncertainty in model input variables and parameter estimates
- V(M) = variance attributed to model error
- V(0) = variance attributed to measurement errors in the observed lake response variable

Note that the variance of a predicted value is given by the sum of the first two terms and that the last term is included only when comparing observed and predicted lake conditions. In the Vermont LEAP subroutine, V(I) terms are calculated from the standard deviations specified for each input variable (subscripts 1 - 38). These values should reflect the uncertainty in each input variable, which would tend to be lake- and data-specific. V(M) terms are calculated from the standard deviations specified for each model error variable (subscripts 39 - 44) and would tend to be constant across lakes.

For these types of models, previous work (Walker, 1977, 1982b) indicates that the error "balance" tends to be dominated by the model (V(M)) and data (V(O)) terms. Because the V(I) terms are lake- and information-specific, it is necessary initially to ignore them in calibrating the other terms based upon observed and predicted lake

1

Observed Lake Conditions

LEAP Pathways

conditions. The V(I) terms can still be included in LEAP applications, although, in general, they will be relatively small.

LEAP predictions correspond to long-term-average lake conditions. V(0) errors reflect errors in observed lake conditions based upon limited sampling. In order to estimate the V(0) terms, it is convenient to employ the following nested analysis of variance (Snedecor and Cochran, 1972):

V(0) = V(Y) / n + V(W) / (nm)

where,

V(Y) = between-year variance component

V(W) = within-year variance component

n = number of sampling years

m = average number of observations within each sample-year

Each of the above terms is specific for each observed variable. The second term in the above equation incorporates analytical error, field sample collection error, and statistical sampling error; the last is attributed to temporal variablity in lake conditions within a given For an "adequate" sampling design, the second term should be year. small in relation to the first; this is because "m" is relatively large. For example, a pooled estimate of V(Y) for chlorophyll in Vermont Lakes is .074 on a natural log scale (Walker, 1981). Previous analysis of within-year variance in chlorophyll at 258 stations in Corps of Engineer reservoirs suggests a typical V(W) value of .32 (Walker, 1982c); this value is conservative (high) because it is based upon a sampling regime which includes some spring and fall samples. For a one-year, weekly, June-August, sampling regime (n=1,m=12), terms of the above equation are .074 and .027, respectively. Definition of a within-year variance component for spring phosphorus is indeterminant. Because of these considerations. variance in the observations is approximately represented by considering V(Y) only, although this could be refined by analysis of time series data from Vermont lakes. Table 1 summarizes pooled estimates of V(Y), n, and V(O) for each response variable, based

2

Variable	V(Y)	n	V(0)	
Spring P	.080	5	.016	
Mean Chlorophyll-a	.074	4	.019	
Maximum Chlorophyll-a	.083	4	.021	
Transparency	.035	4	.009	
Oxygen Depletion Rate	.020	2	.010	

Pooled Estimates of Year-to-Year Variance in Observed Lake Conditions

V(Y) = pooled estimate of year-to-year variance n = average number sample-years per lake V(0) = error variance in mean estimate = V(Y) / n

all variances expressed in natural logarithms based upon ANOVA's conducted on LEAP calibration lakes (Walker,1981b) upon analyses of variance for the LEAP calibration lakes (Walker, 1981).

Figure 2 summarizes LEAP residual distributions for the calibration lakes. Given V(0) estimates, the model error terms can be estimated by difference from the residual error variance. In this exercise, model error terms must be "tracked" through the network. For example, the model error for chlorophyll is the cumulative effect of model errors in predicting watershed phosphorus export, lake phosphorus retention, and the lake phosphorus/chlorophyll relationship. For multiplicative models, the model error variance terms are additive on a logarithmic scale, although average sensitivity or slope must also be considered using the standard first-order error analysis procedure. For example, the chlorophyll-a model error is tracked using the following scheme:

$$log(B) = a + b log(P)$$
$$V(MB) = b^{2} V(MP) + V(MB/P)$$

where,

a,b = regression coefficients for phosphorus/chlorophyll relationship V(MB) = total model error for chlorophyll V(MP) = total model error for spring phosphorus V(MB/P) = model error term for phosphorus/chlorophyll relationship

For models of more complex structure, an average sensitivity (b) is employed in variance tracking, based upon analytic differentiation of the model at average values of the lake response variables.

Results of the error tracking exercise are summarized in Table 2. Because observed phosphorus loadings are not available for Vermont lakes, it is not possible to separate the spring phosphorus model error into its two components (watershed export and lake phosphorus retention). In this case, the variance is assumed to be partitioned equally between the two sources; this assumption is of no consequence to model applications because the variance in predicted lake conditions reflects only the sum of these error terms and not their relative

3

Figure 2 LEAP Error Distributions

r-pspr minimum of interval 0.600 0.400 Hv Mo 0.200 Sh Bo 0.000 St Ho Ce -0.200 Wi Ir Fa -0.400 Pa Sh Ha -0.600 <h>></h>	Su Ca SC E Cu	1	frei	equend 0 2 2 7 4 3 0	cy 18 18 16 14 7 0	percen int 0.0 1 11.1 11.1 38.9 22.2 16.7 0.0	nt age cum 100.0 100.0 88.9 77.8 38.9 16.7 0.0
univariate statistics	for: r-ps	pr					
number of cases = 1 mean =	8 070957 0659931 256891 0673617 3.62038 0605498 .17188 190726 653719 .21251 197199	<pre>missing values = 0 maximum = upper hinge = median = lower hinge = h-spread = h-spread = prob(>t) = large-sample z = large-sample z = cor. sum of sqs = av absolute value =</pre>	563368 228787 0634172 150874 367914 379661 256484 330347 566137 .12188 208169				
five lowest values 16 Halls 17 Shadow 11 Parker 4 Curtis 6 Fairfield <h></h>	-0.368 1 -0.275 -0.225 1 -0.186 1 -0.139	ive highest values 4 Star 0.199 1 Bomoseen 0.319 3 Shelburne 0.367 0 Morey 0.480 7 Hveys 0.563					
r-chl minimum of interval 1.400 1.200 St 1.000 Ca 0.800 Sh 0.600 0.400 0.200 Mo -0.000 Sh Bo Fa -0.200 Ho Ir -0.400 El Pa -0.600 SC Su	Ha Hv Cu	· .	fr	equer int 1 1 0 1 0 1 6 2 2 2 2	16 16 16 13 13 13 13 12 6 4 2	perce 0.0 66.33 0.0 60.0 60.0 37.5 122.5 122.5 122.5	ntage 100.0 93.8 87.5 81.3 81.3 75.0 37.50 12.5
univariate statistic	s for: r-c	h1	_				
number of cases = mean = variance = std deviation = mean square = coef of variation = std error of mean = t-test for m=0 = skewness coef. = kurtosis coef. = sum of squares = av absolute dev =	16 •147021 •285535 •534354 •289304 3.63456 •133589 1.10055 1.09054 •321237 4.62886 •382537	<pre>missing values = maximum = upper hinge = median = lower hinge =</pre>	2 .39954 .259324 .0318102 .193642 .550281 .452966 .288517 1.78084 .262289 4.28302 .364798	2			
five lowest value 16 Sunset 11 SC 10 Parker 4 Elmore 8 Iroquois	-0.550 -0.415 -0.261 -0.201 -0.171	five highest values 15 Shadow 0.15 9 Morey 0.29 12 Shelburne 0.92 2 Carmi 1.02 13 Star 1.40	8 3 2 3 0				

r-chlx minimum of interval 1.400 1.200 Ca St 1.000 0.800 0.600 0.400 Sh Bo 0.200 Mo Ir -0.000 Sh Hv Fa -0.200 Ha Pa Cu -0.400 El Ho -0.600 -0.800 Su SC	frequ int () ()	lency percentage cum int cum 16 0.0 100.0 16 12.5 100.0 14 0.0 87.5 14 0.0 87.5 14 0.0 87.5 14 12.5 87.5 14 12.5 75.0 10 18.8 62.5 3 10 18.8 43.8 2 4 12.5 25.0 2 0.0 12.5 2 12.5 12.5
univariate statistics for: r-ch	Lx	
<pre>number of cases = 16 mean = .151378 variance = .350952 std deviation = .592412 mean square = .351933 coef of variation = 3.91346 std error of mean = .148103 t~test for m=0 = 1.02211 skewness coef. = .669165 kurtosis coef. = .136169 sum of squares = 5.63092 av absolute dev = .431285</pre>	missing values = 2 maximum = 1.35772 upper hinge = .427412 median = .0531025 lower hinge =184901 minimum =781423 h-spread = .612313 prob(>t) = .324216 large-sample z = 1.09274 large-sample z = .111182 cor. sum of sqs = 5.26428 av absolute value = .425639	
five lowest values fr 11 SC -0.781 16 Sunset -0.659 7 Hortonia -0.326 4 Elmore -0.207 3 Curtis -0.117	ive highest values Morey 0.314 Bomoseen 0.465 Shelburne 0.594 Star 1.340 Carmi 1.358	
r-secchi minimum of interval 0.400 0.200 SC Su 0.000 Mo Sh Hv Pa El Ir -0.200 Ho Bo Fa Cu Ha -0.400 St -0.600 -0.800 Ca -1.000 Sh	f	requency percentage int cum int cum 0 16 0.0 100.0 2 16 12.5 100.0 6 14 37.5 87.5 5 8 31.3 50.0 1 3 6.3 18.8 0 2 0.0 12.5 1 2 6.3 12.5 1 1 6.3 6.3
univariate statistics for: r-s	ecchi	
number of cases = 16 mean =0842503 variance = .101904 std deviation = .319225 mean square = .102634 coef of variation =-3.78901 std error of mean = .0798062 t-test for m=0 = -1.05569 skewness coef. = -1.39145 kurtosis coef. = 1.15726 sum of squares = 1.64214 av absolute dev = .219372	missing values = 2 maximum = .246913 upper hinge = .121528 median = .024271 lower hinge = .109284 minimum = .90007 h-spread = .230812 prob(>t) = .308559 large-sample z = .2.27223 large-sample z = .944899 cor. sum of sqs = 1.52857 av absolute value = .219372	8
five lowest values 12 Shelburne -0.900 2 Carmi -0.679 13 Star -0.360 14 Halls -0.110 3 Curtis -0.108	five highest values 6 Hveys 0.107 15 Shadow 0.126 9 Morey 0.195 16 Sunset 0.239 11 SC 0.247	

1

I

r-hod				
minimum of	inț	:erv	val	
0.800				
0.600	Sh			
0.400	Ηv			
0.200	Ho			
0.000	\$C	Во	Mo	Ir
-0.200	Ha	Fa	Pa	
-0.400	Sit	Ca		

univariate statistics for: r-hod

number of cases =	12	missing values	= 6
mean =	.120334	maximum =	.662295
variance =	.0917856	upper hinge =	.338888
std deviation =	.302961	median =	.142411
mean square =	.098617	lower hinge =	139607
coef of variation =	2.51767	minimum =	209161
std error of mean =	.0874574	h-spread =	.478495
t-test for m=0 =	1.37591	prob(>t) =	.194138
skewness coef. =	.569876	large-sample z	:= .805927
kurtosis coef. =	.897996	large-sample z	:=634979
sum of squares =	1.1834	cor. sum of so	ts = 1.00964
av absolute dev =	.236635	av absolute va	lue = .256691
five lowest value	s	five highest valu	2es
2 Carmi	-0.209	I Bomoseen	0.160
12 Sunset	-0.207	9 SC	0.163
8 Parker	-0.140	5 Hortonia	0.398
3 Fairfield	-0.139	4 Hveys	0.594
10 Halls	-0.123	11 Shadow	0.662

frequency percentage int cum int cum 0 12 0.0 100.0 1 12 8.3 100.0 1 11 8.3 91.7 1 10 8.3 83.3 4 9 33.3 75.0 3 5 25.0 41.7 2 2 16.7 16.7

Τa	þ	1	e	- 2

Model Error Components

Model	Error Term	V(R)	V(0)	V(M)	V(M) Components	
39/40	Spring Phosphorus	.069	.016 _. ०ाव	.053 ,0 49	.026 (Watershed, 39) .027 (Retention, 40)	
41	Phosphorus/Ch1-a	.176	.019	.158	2 .94 x .053 (Spring P) .111 (P/Ch1-a, 41)	
42	Mean Chl-a/Max Chl-a	.252	.021	.231	2 1.16 x .158 (Mean Ch1-a) .018 (Mean/Max Ch1-a, 42)	
43	Mean Chl-a/Secchi	.100	.009	.091	2 .65 x .158 (Mean Ch1-a) .024 (Mean Ch1-a/Secchi, 43)	
44	Phosphorus/HOD	.097	.010	.087	2 .91 x .053 (Spring P) .043 (P/HOD, 44)	
<pre>V(R) = total variance of residuals, excluding Star Lake (outlier) for mean and maximum chlorophyll-a</pre>						
V(0) = average observed data error component (Table 1)						
V(M)	= estimated total model	error	= V(R) - V(O)		
V(M)	Components = breakdown	of mod	el err	or, sum	= V(M)	
A11 v	ariances on natural log	scale				

Table 3

Summary of Calibrated Error Terms for LEAP Input

Variable	Mean	Standard Deviation
 39 Watershed Model Error 40 Retention Model Error 41 P/Chl-a Model Error 42 Mean Chl-a/Max Chl-a Model Error 43 Mean Chl-a/Secchi Model Error 44 Phosphorus/HOD Model Error 	1 1 1 1 1	.16 .16 .33 .13 .15 .21

Notes:

Standard Deviations estimated from square roots of variance terms estimated in Table 2;

Standard Deviations of input variables 1-38 should be set to 0.0. magnitudes. Corresponding input values for the model error terms are specified in Table 3.

With a slight modification of the LEAP model subroutine, it can be readily employed to test whether a given lake conforms to the model structure and calibration. Output variables 26-30 were originally used to compare observed and predicted lake conditions on log scales. Because of the structure of the LEAP error analysis framework, it is necessary to express these comparisons as ratios, rather than log ratios; i.e., the "LOG" transformation in line 4052 of the subroutine should be removed in order to provide a means for hypothesis testing. The effects of variance in the observed conditions (V(0)) can be incorporated by specifying non-zero standard deviations for input variables 20-24. These standard deviations can be estimated from the number of sampling years and the pooled estimates of year-to-year variance given in Table 1. For example, for a lake with a mean chlorophyll-a of 4.4 mg/m3 based upon 3 years of sampling, the input standard deviation for variable 21 would be:

$$s(21) = 4.4 (.074 / 3)^{.5} = .69$$

With these modifications, output from the LEAP error analysis procedure will include estimates of mean, standard deviation, minimum(2.5%) and maximum(97.5%) for each observed/predicted comparison (output variables 26-30). The mean equals the ratio of the observed to the predicted response and would therefore equal 1.0 in the case of perfect fit. If the estimated range (min to max) does not include 1.0, then the probability that the lake conforms to LEAP (or vice-versa) is less than 5%. This range reflects the combined effects of model error (V(M)), input data errors (V(I), if any are specified), and observed response (V(O)) error. A lake which does not "conform" would be considered atypical of the lakes used in LEAP calibration. It would also be possible to modify the model code to permit direct probability calculations.

4

REFERENCES

Snedecor, G.W. and W.G. Cochran, <u>Statistical Methods</u>, Iowa State University Press, Ames, Iowa, 1972.

Walker, W.W., "Some Analytical Methods Applied to Lake Water Quality Problems", Doctoral Thesis, Division of Engineering and Applied Physics, Harvard University, 1977.

Walker, W.W., "Calibration of LEAP to Vermont Lakes: Data Base Summary", prepared for Vermont Agency of Environmental Conservation, Water Quality Division, December 1981.

Walker, W.W., "Calibration and Testing of a Eutrophication Analysis Procedure for Vermont Lakes", prepared for Vermont Agency of Environmental Conservation, Water Quality Division, January 1982a.

Walker, W.W., "A Sensitivity and Error Analysis Framework for Lake Eutrophication Modelling", <u>Water Resources</u> <u>Bulletin</u>, Vol. 18, No.1, February 1982b.

Walker, W.W., "Empirical Methods for Predicting Eutrophication in Impoundments: Phase II Model Testing", prepared for the Office of the Chief, Corps of Engineers, U.S. Army, Waterways Experiment Station, Vicksburg, Mississippi, draft, March 1982c. Calibration of LEAP to Vermont Lakes

Interim Report:

Data Base Summary Preliminary Model Testing

prepared for

Vermont Agency of Environmental Conservation Water Quality Division Montpelier, Vermont

Ъy

William W. Walker, Jr., Ph.D. Environmental Engineer 1127 Lowell Road Concord, Massachusetts 01742

December 1981

INTRODUCTION

The Lake Eutrophication Analysis Procedure (LEAP) is a system which can be used for predicting lake trophic status and related water quality conditions, given certain land use, morphometric, and hydrologic information. (Walker, 1979,81). Regional calibration and testing of the framework are required prior to application in a planning context. This report summarizes the data base which has been established for 15 Vermont lakes using information provided by the Agency of Environmental Conservation (AEC). With slight modifications, the original version of LEAP has been applied to each of the 15 lakes and the results compared with observed water quality data. The purposes of this report are to provide:

- a concise data summary of the model input variables and observed water quality conditions to be used in model calibration and testing
- (2) opportunity for the AEC to review the data base and suggest any corrections or refinements
- (3) indications of model sensitivity to key variables which may need better definition
- (4) indications of the types of model changes which may be required in order to improve the framework

Following review of this report and refinements in the data base, modifications in the model structure will be made to account for important factors which are not currently considered in LEAP. Results indicate two such factors: (1) differences in phosphorus export between watersheds with sedimentary and glacial till soils; and (2) effects of internal phosphorus loading (recycling) on the lake phosphorus balance and productivity. A second report will describe the final data base and

1

the structure, calibration, and testing of the refined model framework. Appendices to this report contain the following:

- A data base tables
- B LEAP subroutine and variable definitions
- C model predictions and sensitivity analyses
- D charts of observed and predicted lake conditions
- E analyses of variance in observed lake water quality

The following sections describe the modified model and discuss key results.

LEAP MODIFICATIONS

Before preliminary testing, the original LEAP framework has been modified to include the following:

- additional land use categories, to conform with the land use data base;
- (2) a means of accounting for phosphorus retention by upstream lakes or reservoirs;
- (3) a phosphorus input term for shoreline septic systems;
- (4) modifications of the oxygen depletion rate calculation to account for the effects of multi-basin lakes;
- (5) modification of the function used to calculate summer chlorophyll based upon spring phosphorus concentration;
- (6) modification of the function used to calculate transparency to account for variations in non-algal turbidity or color;
- (7) expansion of the list of output variables to include loading components;
- (8) provision of alternative means for estimating mean hypolimnetic depths required for oxygen depletion calculations.

Each of these changes is discussed below. Sensitivity analyses indicate

2

that none of the changes are very substantial in terms of impact on predicted productivities of the study lakes. The original phosphorus export and retention coefficients, which are derived from much larger watershed and lake data bases, have been retained. Thus, we are essentially testing the original model framework.

The watershed of each lake has been classified according to nine land use categories, in accordance with the types of data available from planning maps and landsat:

- (1) lake surface area
- (2) upstream lake surface area
- (3) wetlands (exclusive of upstream lakes)
- (4) conifer forest
- (5) hardwood forest
- (6) mixed forest
- (7) untilled agriculture
- (8) tilled agriculture
- (9) urban

The model framework has been modified to permit specification of a for each land use category. separate export concentration In preliminary testing, categories (2) through (7) have been treated as non-contributing areas (the "forested" category in the original LEAP framework, with an export concentration of 15 mg/m3). Category (8) corresponds to the old "agricultural" classification, with an export concentration of 57 mg/m3, since the data base used to develop the "agricultural" original export function treated and "cleared-unproductive" separately (Omernik, 1977). Category (9) is unchanged, with an export concentration of 139 mg/m3.

The land use data file (Appendix A) contains three sets of land use distributions for each lake, keyed by the following symbols:

- (1) LS = based upon Landsat
- (2) PM = based upon planning map

(3) XX = "best"

The last category is based upon the first two and subjective assessments provided by the AEC for each lake. Land use distributions have been adjusted so that the total watershed area equals the value specified in the classification survey report (Vermont AEC, 1980). The adjustment procedure has used direct estimates for landuse categories (1), (2), (3), (7), (8), and (9). Total forested area ((4)+(5)+(6)) has been calculated by difference from the total watershed area and the above categories. Finally, forested areas have been partitioned among the conifer, hardwood, and forested categories using percentages calculated from landsat data, since forest types are generally not available from planning maps. Appendix A lists the estimated land use breakdowns by lake and source, with areas expressed in acres and as fractions of the respective total watershed areas.

The framework has also been modified to account for phosphorus retention by upstream lakes or reservoirs. Surface and drainage areas of upstream lakes and reservoirs were provided by the AEC for each study lake. Using the settling velocity model (Chapra, 1975), the amount of phosphorus trapped by each upstream lake can be calculated from the following system of equations:

WT = QR CI AW U / (U + QS)QS = QR AW / AL

or,

WT = QR CI FUFU = AW AL U / (AL U + QR AW)

where,

WT = P load trapped by upstream lake (kg/yr)
QR = average runoff rate = .6 m/yr
CI = average inflow concentration of upstream lake (mg/m3)
AW = watershed area of upstream lake (km2)

U = phosphorus settling velocity = 12 m/yr

- AL = upstream lake surface area (km2)
- QS = surface overflow rate of upstream lake (m/yr)

FU = adjustment factor for P retention in upstream
lake (km2)

The parameters CI and FU are input for each lake. Since upstream lakes are generally remote from intensive uses, inflow concentrations are initially assumed to equal the forested value (CI = 15 mg/m3), although this parameter could be adjusted if there are significant agricultural or urban uses above a given upstream lake. FU values have been calculated from the surface and drainage areas of each upstream lake and summed to provide a model input value for each study lake. In the model subroutine, the estimated WT value is subtracted from the total undeveloped loading in constructing the lake phosphorus budget. Calculations are generally insensitive to the upstream lake factors. Bomoseen had the highest value (15.95 km2 vs. a total watershed area of 95.7 km2)

The phosphorus input from shoreline septic systems is estimated from the following equation:

WS = US FS

where,

WS = septic input (kg/yr) US = septic system use factor (annual population equivalents) FS = septic phosphorus export factor (kg/capita-yr)

US and FS are model input variables for each lake. A nominal value of .05 kg/capita-yr has been used in preliminary calculations. This is based upon .5 kg/cap-yr input to systems (under phosphorus detergent ban) and an assumed 90% treatment efficiency. On the average, the assumed FS value may be a bit low. FS values can be adjusted from lake

to lake, based upon soil suitability, setbacks, age, etc.. Future work will consider alternative values.

Septic system use, US, is estimated from the following:

WS = 3 (.5 R-SEAS + R-PERM) + (.5 USE-DAY + USE-NT)/365

where,

R-SEAS = number of seasonal shoreline residences R-PERM = number of year-round shoreline residences USE-DAY = day use of resorts/parks (capita-days) USE-NT = night use of resorts/parks (capita-days)

The above scheme assumes an average of 3 people per dwelling. Appendix A lists the above residence and use factors for each lake, along with the calculated annual population equivalent. residence counts were not available for a few lakes. Approximate estimates have been derived by counting structures on USGS or lake contour maps, increasing the total by 20% (based upon average relationship between map count and tabulated values for other lakes), and assuming that 75% of the residences are seasonal. Septic contributions calculated in the above way account for a maximum of 9.4% of the total phosphorus loadings for the study lakes (St. Catherine) and results are generally insensitive to this loading component. The assumed FS value may be biased on the low side, however, and needs further investigation.

The scheme for calculating oxygen depletion rate is based upon its relationship with mean depth and phosphorus concentration (Walker, 1979). The mean depth used in this calculation should reflect the morphometry of the stratified portion of the lake. Use of the nominal mean depth will give biased predictions in lakes which have more than one hypolimnetic basin or relatively large, shallow, isolated embayments. For example, Lake Quinsigamond, Massachusetts, has three separate hypolimnetic basins. Depletion rates vary by a factor of two among the basins but there is little variation in surface water quality. The model has been shown to apply using mean depths calculated separately

for each basin (Walker, 1981).

Accordingly, an additional input term ("basin mean depth") has been included in the LEAP framework for use in oxygen depletion rate calculations. Based upon a review of contour maps of the study lakes, only Hortonia is considered to have a basin mean depth which is substantially different from the nominal mean depth. Roughly half of the surface area is in the southwest portion of the lake (maximum depth 15 ft) which is remote from the stratified northeastern portion (maximum depth 60 ft). In this case, the basin mean depth is estimated at 8.9 m, as compared with the nominal mean depth of 5.6 m. In all other study lakes, the basin mean depths equal the nominal mean depths.

The function relating spring phosphorus to summer chlorophyll has been replaced by the regression equation published in the classification survey report (Vermont AEC, 1980). Figure 1 plots observed chlorophyll vs. observed spring phosphorus values for the study lakes, in relation to the regression equation. The chlorophyll productivities of Star and Carmi are considerably greater than the predicted values. In these cases, the observed summer chlorophyll/spring phosphorus ratio exceeds 1, which is roughly the algal physiologic ratio. This indicates that seasonal or internal loadings are significant in these lakes and that summer phosphorus values would be more representative of trophic status than spring overturn values. The model tends to over-predict the chlorophyll values in lakes with meta- or hypolimnetic algal populations (Harveys, St Catherine, Hortonia, Morey). This may be related to the sampling difficulties which are present when most of the chlorophyll is located within a relatively narrow depth range. While sampling and year-to-year variablities influence the scatter in Figure 1, variabilities in the observed chlorophyll/phosphorus relationships impose limitations on the accuracy of chlorophyll predictions derived from the LEAP framework.

The transparency function has been modified to provide a means of incorporating the effects of non-algal turbidity and color:

$$1/S = A0 + A1 B$$

Observed Summer Chlorophyll-a vs. Observed Spring Phosphorus

where,

```
S = mean summer secchi depth (m)
A0 = non-algal turbidity/color term (1/m)
A1 = chlorophyll sensitivity = .025 m2/mg
B = mean summer chlorophyll-a (mg/m3)
```

The function is similar to those developed for Harveys Lake (Vermont AEC, 1981) and for Corps of Engineer reservoirs (Walker, 1981). The intercept term, AO, can be increased in lakes with high non-algal turbidity or color. One Platinum-Cobalt Unit of true color is the equivalent of about .003 1/m in AO.

Observed chlorophyll and transparency data (Figure 2) indicate that Star Lake (A0=.68) and Elmore (A0=.2) have somewhat higher non-algal light extinction coefficients then the others. A nominal value of .08 1/m has been used for all lakes in preliminary testing. Observed Secchi and chlorophyll data can be used to adjust A0 in lake applications. Predicted transparencies are sensitive to A0 only relatively unproductive lakes, in which transparency is relatively insensitive to The model will give biased transparency predictions in chlorophyll. lakes with substantial metalimnetic or hypolimnetic algal populations, depending upon how chlorophyll samples are taken. A positive bias is apparent for Morey, in which case most of the chlorophyll is located below the Secchi depth.

In addition to the above modifications, the output variable list has been expanded to include an itemized accounting of the loading components (undeveloped, agricultural, urban, septic, and atmospheric). This provides insight into factors controlling the nutrient budget of each lake. Mean hypolimnetic depths required for oxygen depletion calculation can be input directly (as derived from hypsiographs). Anticipating that detailed hypsiographs would not be available for many future applications, an option has been included to permit estimation of mean hypolimnetic depth based upon input values for mean depth, maximum

Observed Summer Secchi Depth vs. Observed Summer Chlorophyll-a

depth, and thermocline depth. The calculation procedure assumes that lake surface area and volume vary as single term power functions in total depth. If the input value for mean hypolimnetic depth is zero, the estimation procedure is used. If both the mean hypolimnetic depth and the thermocline depth are zero, the lake is assumed to be unstratified and oxygen depletion calculations are by-passed.

DATA BASE

The data base is assembled in a series of tables in Appendix A. The following should be considered in reviewing the data:

(1) Observed water quality data have been tabulated by lake and year, based upon information in the classification survey report, STORET printout, lake reports, and the tabulated 1981 data. Where possible, missing chlorophyll and transparency values have been filled with lay monitoring data. Hypolimnetic oxygen depletion rates have been re-calculated for all lakes, based upon profiles derived from STORET and the hypsiographs, and using a consistent averaging procedure. Thermocline depths are based upon the Cornett/Rigler definition. The depletion rates tabulated in the Harveys Lake report (1981) are probably biased on the low side, because profiles measured after the bottom of the hypolimnion reached anoxic conditions were apparently included in the slope estimation procedure.

(2) The morphometric file includes two estimates for mean depth: one derived from the classification survey report, and the other, from the hypsiographs. In most cases, aggreement is reasonable, with the exception of Harveys, and, perhaps, Winona and Carmi. These values need further checking. Aside from Harveys and Bomoseen, hypsiographs values have been used in the model testing described below.

(3) Total drainage areas have been taken directly from the classification survey report. Is this the most reliable source?

(4) Runoff rates (back-calculated from residence times, mean depths, drainage areas, and surface areas in the classification survey report) seem highly variable, with range from .31 to .89 m/yr. Previous experience indicates that long-term-average runoff rates in New England are rarely outside of the .5 to .75 m/yr range. These values need checking.

(5) Any additional insights that could be provided with regard to the "best" land use estimates would be helpful, particularly for lakes with large variances between landsat and the planning maps. Based upon the charts in Appendix C, problem lakes in this regard include Cedar, Curtis, Iroquois, Park, and Shelburne. Tilled and urban land uses are the most important for export calculations.

(6) The ANOVA's in Appendix E should be reviewed. Relatively high within-lake (year-to-year) variability may indicate problems with measurements in certain lakes and years. For example, the year-to-year variance in spring phosphorus is .35 for Star Lake, in relation to an average year-to-year variance of .08 for all lakes.

PRELIMINARY TESTING

To provide preliminary indications of error and sensitivity, the revised model has been applied to each lake. The distributions of predicted variables and sensitivity analyses for spring phosphorus concentrations are tabulated in Appendix C. These calculations are based upon the "best" set of land use estimates for each lake. Appendix D contains a series of charts comparing observed values of spring phosphorus, mean chlorophyll, maximum chlorophyll, transparency, and oxygen depletion rate with predicted values for each set of land use estimates. Symbols in the charts are used to identify different sampling years and different land use estimates. Review of the charts provides insights into year-to-year variability in observed conditions,

sensitivity to assumed land use distributions, and differences between observed and predicted distributions. Comments on the results and/or data base are indicated below the chart for each lake.

Figure 3 contains stem-and-leaf diagrams of residuals for each of the six response variables. Uniform scales have been used to permit direct comparisons of the error distributions on a natural logarithmic scale. While the LEAP framework provides direct error estimates, factor of two accuracy is generally a "rule-of-thumb" for empirical lake models (Vollenweider and Kerekes, 1981). These are indicated for each variable in Figure 3 (+/- .7 log units).

Table 1 summarizes error statistics calculated from the observed and predicted lake characteristics. For reasons discussed below. Shelburne Pond is not typical of the other Vermont lakes or of the lakes used in development of LEAP and has been excluded from the error statistic calculations. Analyses of variance have been conducted on the observed lake data to provide indications of year-to-year variability in relation to lake-to-lake variability. Details on the ANOVA calculations are given in Appendix E. ANOVA's indicate that differences among lakes are strongest in the case of TDO (F = 57.8) and weakest in the case of HOD (F = 5.0). The strength of the TDO variations is due primarily to differences in mean hypolimnetic depths, rather than productivity. 02 for HoD to .038 for CAP-max Within-lake (i.e. year-to-year) variance ranges from of variability Thus Type

imposes limitations on the accuracies of the observed mean values used The pooled error variance of the observed means is in model testing. appreciable in relation to the total error variance only for the oxygen statistics, which have much lower total error variance than the other variables. Thus, the observed data base appears to be adequate for model testing - we cannot attribute lack of fit exclusively to measurement errors or variability in observed lake conditions, although they may be important for certain lakes and variables.

For spring phosphorus, the key variable in the framework, the error variance estimated by LEAP (.12) is comparable to the observed error variance (.11). Thus, the residual spread in Figure 3 (excluding Shelburne) is consistent with data from other lakes and watersheds used

stem-and-leaf diagram for r-pspr 🔆 🗡)1.60 She 1.40 1.20 1.00 0.60 Mor --- 2x Accuracy 0.40 Iro 0.20 Fai Har Win -0.00 Bom Car -0.20 Hor Par St Sta -0.40 Ced Elm -0.60_Cur Figure 3 -0.80 LEAP Error Distributions -1.00-1.20 -1.40 -1.60 stem-and-leaf diagram for r-chla >1.60 She 1.40 1.20 1.00 Car Sta 0.80 ---- 2x Accuracy 0.60 0.40 Fai Mor 0.20 Iro -0.00 -0.20 Bom Har Par -0.40 Cur -0.60 Elm Hor_St -0.80 -1.00-1.20 -1.40 -1.60 stem-and-leaf diagram for r-chlmax >1.60 She 1.40 Car 1.20 1.00 0.60 IFO Nor - - 2x Accuray 0.40 Fai 0.20 Bom -0.00 Par -0.20 Har -0.40 -0.60 Cur Elm -0.80 Hor -1.00 St -1.20 -1.40 -1.60

+ In (observed/predicted)

stem-and-leaf diagram for r-secchi

1.60 1.40 1.20 1.00 --- 2x Accuracy 0.80 0.60 0.40 0.20 Har St -0.00 Bom Cur Hor Mor -0.20 Elm Par Figure 3 -0.40 Fai Iro $\frac{-0.60}{-0.80}$ Car LEAP Error Distributions (continued) -1.00-1.20 -1.40∠ -1.60 She Sta stem-and-leaf diagram for r-hod 1.60 1.40 1.20 1.00 ---- 2x Accuracy 0.80 0.60 0.40 0.20 Mor -0.00 Fai Har Iro -0.20 Bom Car Hor Par St -0.40-0.60 -0.80 -1.00 -1.20 -1.40-1.60 stem-and-leaf diagram for r-tdo 1.60 1.40 1.20 1.00 ---- 2x Accurany 0.80 0.60 0.40 0.20 -0.00 Bom Car Hor Par St -0.20 Fai Har Iro -0.40 Mor -0.60 -0.80 -1.00-1.20 -1.40-1.60

Table 1

Summary of Error Statistics

n		V	ariable			
Statistic	Spring P-	cn1-a	Chl-max Se	ccni	HOD	TDO
MODEL	ERROR STATI	STICS -	excluding	Shelbu	irne	la ani ani an in in
Number of Lakes	14	13	11	13	9	9
Estimated MSE	(a) .12	.25	.26	.26	.18	.18
Observed MSE	(b) .11	.32	.51	.28	.02	.02
Var (Obs. Means)	(c) .016	.020	.036	.008	.009	.009
R-Squared	16	.16	.16	.06	.24	.96
A	NOVA STATIST	ICS - ex	cluding Sh	elburne	<u> </u>	
Among-Lake Mean S	q534	1.523	1.352	.986	.100	1.160
Within-Lake Mean	Sq.(4) .080	.072	.088	.028	.020	.020
F	6.7	21.0	15.3	35.1	5.0	57.8
بد و بر بر بر می مک ^{ر بن بند} برز بارد مود <mark>می می می می مع</mark> رف ا	ANOVA STA	TISTICS	- all lake	es (e)-		
Among-Lake Mean S	a. 1.710	2.321	2.025	1.547	.100	1.160
Within-Lake Mean	Sg.(d) .080	.074	.083	.035	.020	.020
F	21.2	31.4	24.3	44.6	5.0	57.8
Note: all statist	ics on natur	al log s	cales	• •• •• •• •• •• •• ••		
a error variance	of estimate	d values	calculate	d by L	EAP	

b observed error variance

c pooled estimate of error variance of observed mean values, based among-year variance and average number of sample years d represents year-to-year variance within lakes

e details given in Appendix E

in development of LEAP. Observed variance is greater than estimated variance in the case of chlorophyll (.32 vs .25) and maximum chlorophyll (.51 vs .26).

R-squared values are appreciable only in the case of TDO (.96 vs -.16 to .24 for the other variables). The strength of the TDO prediction is attributed to the hypolimnetic depth effect discussed above. Thus, while it does explain variance in hypolimnetic oxygen status, the existing framework does not explain much variance in the observed productivities of this collection of lakes. This is attributed to the relatively low variance in lake productivities (most are mesotrophic), inherent "factor-of-two" accuracy limits of the empirical modelling approach, and to the effects of factors which are not considered in the The error analyses for predicted spring phosphorus in Appendix models. C indicate that the predominant sources of prediction error are in the phosphorus retention and export models. Further analyses discussed below indicate that there are good possibilities for improving these models and reducing prediction error.

A systematic residuals analysis has been undertaken to determine whether errors in the predictions are associated with any of the lake or watershed characteristics included in the data base. Any such associations may indicate need for re-calibration or re-structuring of the model framework. Shelburne is clearly an "outlier" in relation to the other lakes. It is the only lake outside of the factor-of-two error spring phosphorus. Based upon review of the error limits for histograms, bivariate residuals plots, review of soils data for each lake, and independent evidence from the literature, much of the error variance for Shelburne and other lakes can be attributed to the effects of two factors which are not currently considered in the LEAP framework: (1) the differences in phosphorus export between watersheds with sedimentary soils and those with non-sedimentary soils; and (2) the effects of internal loading (recycling) on the phosphorus balance and productivity. These effects are discussed in detail below.

The export functions used in the LEAP framework have been calibrated to data from over 100 watersheds in the Northeast, most of

which have soils of glacial origin (Meta Systems, 1978). The analysis indicated that export coefficients for forested and agricultural lands uses are two to five times greater in the Midwest (western Ohio, Indiana, Illinois), which have soils of sedimentary origin. Greater phosphorus exports from sedimentary watersheds have been identified elsewhere. For example, Dillon and Kirchner (1975) found that mean export values from sedimentary watersheds were about 2.5 times greater than those from igneous watersheds of plutonic origin. This is primarily attributed to high phosphorus concentrations and often poor drainage characteristics of lake-plain soils, as compared with glacial till.

Of the 15 study lakes, three have watersheds with sedimentary soils: Shelburne (approx. 75%), Winona (approx. 40%), and Fairview (approx. 15%). The existing LEAP framework under-predicts spring phosphorus concentrations in each of these lakes, by factors of 6, 1.36, and 1.36, respectively. The bias for Shelburne is reduced to a factor of 4 if land use estimates from the planning map are used. Thus, it seems reasonable that these biases could be at least partially offset by using higher phosphorus export concentrations to represent the sedimentary portions of the watersheds. This will be investigated in future model refinements.

Another factor contributing to bias in the case of Shelburne, is that the watershed contains a high percentage of soils (approx. 75%) in Hydrologic Soil Group D. These high-clay, poorly-drained soils are highly subject to surface runoff, the predominant transport mechanism The watershed also contains a high percentage of for total phosphorus. tilled agricultural land use which, combined with the poorly-drained, lake-plain soil types, would tend to result in higher export coefficients than predicted by the LEAP framework. The location, watershed characteristics and water quality or Lake Shelburne suggest naturally eutrophic conditions which are not typical of other Vermont lakes.

Another curious aspect of Lake Shelburne is the apparent decreasing trend in spring total phosphorus, ranging from 147 mg/m3 in 1977 to 72

mg/m3 in 1981. Model bias reduces from a factor of 6 to a factor of 4 if 1981 measurements are used. This trend contrasts with many of the other lakes, which showed increasing trends over the same period. For example, Harveys increased from 10 to 22 mg/m3, Morey, from 17 to 48 mg/m3, Elmore, from 10 to 15 mg/m3, Parker from 14 to 21 mg/m3, St Catherines, from 10 to 17 mg/m3, and Star, from 10 to 23 mg/m3. These "trends" do not necessarily reflect significant variations in cultural impacts and are probably related to climatologic variations or to the timing of spring phosphorus sampling in relation to peak runoff and turnover.

Year-to-year variations in observed spring phosphorus levels are considerable and it would be useful to develop a better basis for interpreting them. One approach would be use watershed model relating direct runoff to precipitation sequences, similar to that developed in recent work for the New Haven Water Company (Walker, 1981), based upon the SCS Soil Cover Complex Method. The model simulates annual sequences of storm events and calculates direct runoff by event, as well as annual By simulating multiple years, a feeling for year-to-year totals. variations in loadings can be obtained. This provides some help in interpreting lake water quality measurements made during a given year in relation to the long-term-average and, thus, distinguishing naturally-induced from culturally-induced variations. Input data for this model are generally available from soils maps, land use maps, and weather stations which record daily total precipitation. Essentially, this framework is a second-order LEAP which attempts to simulate year-to-year variations, as opposed to the current version, which is focused on the long-term average.

Internal phosphorus recycling is another factor possibly contributing to errors in the spring phosphorus predictions from the existing framework. This effect is demonstrated most effectively using a modelling exercise. The current framework explicitly considers external phosphorus loading only. The effects of internal loading are implicitly included in the phosphorus retention function. If the nutrient balance equation is modified to account for internal loading

directly, the equation for predicting lake phosphorus concentration becomes:

$$P = (WX + WI) (1 - RP) / (QS AS)$$

where,

P = lake phosphorus concentration (mg/m3)
WX = external phosphorus loading (kg/yr)
WI = internal phosphorus loading (kg/yr)
RP = phosphorus retention coefficient
QS = surface overflow rate (m/yr)
AS = lake surface area (km2)

The potential for internal loading is directly related to the oxygen status of the hypolimnion, since phosphorus release rates from anoxic sediments are generally orders of magnitude greater than release rates from oxic sediments. If we assume that the internal loading per unit of hypolimnetic area is proportional to the length of the anoxic period, the following expression results:

> WI = FI TANOX AH = FI (200 - TDO) AH TDO = 12 ZH / HOD

where,

FI = effective P release rate from anoxic sediment (mg/m2-day)
TANOX = length of anoxic period (days/yr)
TDO = days of oxygen supply at spring turnover
AH = hypolimnetic surface area (km2)
ZH = mean hypolimnetic depth (m)
HOD = areal oxygen depletion rate (g/m2-day)

The above expression assumes an average stratified period of 200 days and spring oxygen concentration of 12 g/m3. Combining the above equations, the effect of internal loading on the predicted phosphorus concentration is given by:

P1 = (1-RP) WX / (AS QS) P2 = (1-RP) [WX + FI (200 - TDO) AH] / (AS QS) P2/P1 - 1 = FI (200 - TDO) AH / WX

where,

Pl = lake P calc. from external loading (mg/m3)
P2 = lake P calc. from external and internal loading (mg/m3)

If the internal loading model is realistic, the expression on the right-hand side of the last equation reflects the potential significance of internal loading in relation to the external loading and should be related to the errors in the calculated phosphorus concentrations. Variables AH and WX are measured or calculated in the LEAP framework. TDO can be observed or calculated, based upon external phosphorus is generally more sensitive to morphometry (mean loadings. but hypolimnetic depth). If the model is to be useful, the remaining parameter, FI, should be reasonably constant across lakes and can be estimated from the slope of the line in Figure 4, which plots the error in the spring phosphorus prediction (expressed as P/PE - 1) as a function of the internal loading parameter derived from the right-hand side of the above equation. According to the model, internal loading should be of greater significance in lakes further to the right, including Morey, Iroquois, Fairview, and Carmi. Most of the lakes are close the line with the following equation:

P/PE -1 = -.2 + 1.2 (200 - TDO) AH / WX

The slope of the line indicates an average net release rate from of 1.2 mg/m2-day from anoxic hypolimnetic areas. The apparent negative intercept (-.2) may reflect a 20% bias in the phosphorus retention function for lakes which do not stratify or do not reach completely anoxic conditions. Since the retention function was developed on a

-	•				
- 67	- 1	* • •	- * *	~	<i>.</i>
T.	- 2	έu		C .	-
			_	-	•

Error in Spring Phosphorus Estimate vs. Internal Loading Term

.

collection of oxic and anoxic lakes, it is possible that such a bias could exist.

The significance of the negative intercept meeds further investigation with the refined data base, since some of the negative residuals may be attributed to problems with the input or observed values. As expected, the three lakes with partially sedimentary watersheds (Shelburne, Winona, and Fairview) still have positive biases when the effects of internal loading are considered. Modifications of the above model may be required to account for vertical variations in the volumetric oxygen depletion rate, as observed in Harvey's Lake (Vermont AEC, 1981).

The above model provides a direct means of calculating internal loading which could be incorporated into the lake nutrient balances. The only additional input requirement would be the hypolimnetic surface area, which could be estimated from contour maps or from the mean depth, maximum depth, and thermocline depth using a scheme which is similar to that employed for estimating mean hypolimnetic depths. Modification of the existing LEAP to account for sedimentary soils and internal loading should reduce prediction error considerably and improve its usefulness as a planning tool for Vermont lakes. This work will proceed once the data base has been reviewed and, where possible, refined.

REFERENCES

Chapra, S.C. "Comment on 'An Empirical Method of Estimating the Retention of Phosphorus in Lakes' by W.B. Kirchner and P.J. Dillon", <u>Water Resources Research</u>, Vol. 11, No. 6, pp. 1033-1034, 1975.

Cornett, R.J. and F.H. Rigler, "Hypolimnetic Oxygen Deficits: Their Prediction and Interpretation", <u>Science</u>, Vol. 205, pp. 580-581, 10 August 1979. Dillon, P.J. and B. Kirchner, "The Effects of Geology and Land Use on the Export of Phosphorus from Watersheds" Water Research Vol. 9 pp.

the Export of Phosphorus from Watersheds", <u>Water Research</u>, Vol. 9, pp. 135-148, 1975.

Meta Systems, Inc., "Land Use-Nutrient Export Relationships in the Northeast", in "A Preliminary Analysis of the Potential Impacts of Watershed Development on the Eutrophication of Lake Chamberlain", prepared for New Haven Water Company, Connecticut, June 1978.

Omernik, J.M., "Nonpoint Source - Stream Nutrient Level Relationships: A Nationwhide Study", EPA Ecological Research Series, Corvallis Environmental Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon, EPA-600/3-77-105, September 1977.

Stauffer, R.E., "Sampling Strategies for Estimating the Magnitude and Importance of Internal Phosphorus Supplies in Lakes", Water Chemistry Laboratory, University of Wisconsin, draft report prepared for U.S. Environmental Protection Agency, Corvallis Research Laboratory, May 1980.

Vermont Agency of Environmental Conservation, "Vermont Lake Classification Survey", Department of Water Resources and Environmental Engineering, Water Quality Division, Montpelier, December 1980.

Vermont Agency of Environmental Conservation, "Harvey's Lake Diagnostic/ Feasibility Study", Interim Report, Department of Water Resources and Environmental Engineering, Water Quality Division, Montpelier, January 1981.

Vollenweider, R.A. and J. Kerekes, "The Loading Concept as Basis for Controlling Eutrophication - Philosophy and Preliminary Results of the OECD Programme on Eutrophication", <u>Prog. Wat. Tech.</u>, Vol. 12, pp. 5-38, 1980.

Walker, W.W., "Use of Hypolimnetic Oxygen Depletion Rate as a Trophic State Index for Lakes", <u>Water Resources Research</u>, Vol. 15, No. 6, pp. 1463-1470, December 1979.

Walker, W.W., "A Lake Eutrophication Analysis Procedure Applied to Lake Morey", prepared for the Vermont Department of Water Resources, Water Quality Division, Lakes Program, August 1980. Walker, W.W., "A Sensitivity and Error Analysis Framework for Lake Eutrophication Modelling", accepted for publication in <u>Water</u> <u>Resources</u> <u>Bulletin</u>, 1981.

Walker, W.W., "Empirical Methods for Predicting Eutrophication in Impoundments: Phase II Model Testing", prepared for the Office of the Chief, Corps of Engineers, U.S. Army, Waterways Experiment Station, Vicksburg, Mississippi, draft, 1981.

Walker, W.W., "Water Quality Data Analysis, Model Development, and Model Applications for Lake Quinsigamond", prepared for Meta Systems Inc., Environmental Design and Planning Inc., Massachusetts Division of Water Pollution Control, and U.S. Environmental Protection Agency, May 1981.

Walker, W.W., "Reservoir Eutrophication as a Factor in Managing Water-Supply Reservoirs", prepared for Meta Systems, Inc., and New Haven Water Company, Connecticut, draft, November 1981.

APPENDIX A

Data Base

Observed Water Quality Data by Lake and Year Observed Water Quality Data - Geometric Means Lake Morphometry - I Lake Morphometry - II Land Use Fractions Land Uses - Acres Shoreline Septic Use Data Other Model Input Variables Soils Data - by Lake Soils Data - by Name

Parker Parker St Cather St Cather St Cather	Hortonia Hortonia Hortonia Hortonia Iroquois Iroquois Iroquois Morey Morey Morey Morey Morey	Lake Bomoseen Bomoseen Bomoseen Bomoseen Carmi Carmi Carmi Carmi Carmi Carmi Carmi Carmi Cedar Curtis Curtis Curtis Elmore Harveys Harveys
80.00 81.00 77.00 78.00 79.00	77.00 80.00 78.00 78.00 77.00 81.00 79.00 79.00 81.00 79.00 81.00 79.00	77.00 77.000 77.00 77.00 77.000 77.000 77.000 77.000 77.000 77.000 77.000 77.000 77.0000 77.0000 77.0000 77.00000000
16.00 21.00 10.00 10.00 11.00	9.00 11.00 12.00 14.00 25.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00 29.00	12.00 12.00 14.00 12.00 14.00 12.00 14.00 12.00 14.00 12.00 14.00 12.00 15.00 12.00 16.00 12.00 17.00 10.00 114.00 10.00 115.00 10.00 116.00 10.00 <td< td=""></td<>
	່. 4 4 ເປັນເປັນເປັນ ເປັນເປັນເປັນ ເປັນເປັນ ເປັນ	113.40 117.00
7.90 5.90 2.33 3.00	2.70 3.60 9.40 9.40 9.90 8.10 9.90 6.15 9.26 12.00 12.00 12.00	chia 21, 6, 40 22, 50 22, 50 22, 50 22, 50 22, 50 22, 50 22, 50 22, 50 22, 50 22, 50 23, 6, 40 5, 40, 40 5,
4 1 1 1 3 1	6.00 6.00 25.00 25.00 21.40 20.00 20.00	chlmax 22.00 10.00 64.00 66.00 66.00 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 1.50
3.80 5.90	5.00 5.00 5.00 5.00 5.00 5.00 5.00	se cchi 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0
0.40 0.42	0.32 0.43 0.43 0.43 0.44 0.43 0.55 0.46 0.53 0.55 0.55 0.55 0.55 0.55 0.55 0.55	0.32 0.32 0.32 0.32 0.45 0.45 0.45
	at h	

শ

St Cather	80.00	12.00		3.00	-	6.60	. 🕳
St Cather	81.00	17.00	-	4.90	-	5.40	0.39
Shelburne	77.00	147.00	-	-	-	-	-
Shelburne	78.00	128.00	-	59.30	132.00	0.70	-
Shelburne	79.00	135.00	-	96.80	150.00	0.34	-
Shelburne	80.00	99.00		-	-		-
Shelburne	81.00	72.00	-	-	-	.=	-
Star	78.00	10.00	-	-	-	-	-
Star	\$79.00	7.00	-	17.00	33.00	0.90	-
Star	\$80.00	22.00	· _	23.00	42.00	0.80	
Star	81.00	23.00	-	-	-	-	-
Winona	77.00	40.00	-	-	-	-	-
Winona	78.00	22.00	· 🖬	-	-	-	-
Winona	79.00	20.00	-	-	-	-	-
Winona	80.00	29.00	-	-	-	-	-
Winona	81.00	23.00	-	-	-	-	-

Lake Water Quality Data - by Year

yr = year sampled
pspr = spring phosphorus concentration (mg/m3)
psum = summer epilimnetic phosphorus concentration (mg/m3)
chla = summer chlorophyll-a (mg/m3)
chlmax = maximum summer chlorophyll-s (mg/m3)
secchi = secchi depth (m)
hod = hypolimnetic oxygen depletion rate (g/m2-day)

Lake	pspr	psum	chla	chlmax	secchi	hod	tdo	zhyp
Bomoseen	14.83	12.14	5.37	14.83	4.64	0.38	113.68	3.60
Carmi	19.96	-	21.79	64,99	1.84	0.27	41.78	0.94
Cedar	17.13	· _	-	-	-	-	-	0.00
Curtis	12.15	-	6.30	11.50	3.80	-	-	0.00
Elmore	12.48	13.04	4,22	8.45	3.23	-	-	0.00
Fairfield	19.97	-	10.45	21.65	2.85	0.45	75.70	2.84
Harveys	13.84	-	3.57	7.15	6.65	,430-37	4 89.70- 4	3 is 10-16.4
Hortonia	11.67	-	3.67	6.00	4.93	0.41	106.31	3.63
Iroquois	29.72	-	10.51	36.74	2.65	0.45	60.84	2.30
Morey	27.07	11.34	9.52	20.46	4.72	0.51	47.47	2.00
Parker	15.33	-	6.21	15.68	3.79	0.40	91.50	3.05
St Cather	11.75	-	3.18	4.40	6.38	0.40	162.60	5.42
Shelburne	112.61	-	75.76	140.71	0.49	-	-	0.00
Star	13.72	· <u> </u>	19.77	37.23	0.85	-	-	0.00
Winona	25.94	-	-	-		-	-	0.00

Lake Water Quality Data - Geometric Means

pspr = spring phosphorus concentration (mg/m3)
psum = summer epilimnetic phosphorus concentration (mg/m3)
chla = summer chlorophyll-a (mg/m3)
chlmax = maximum summer chlorophyll-a (mg/m3)
secchi = secchi depth (m)
hod = hypolimnetic oxygen depletion rate (g/m2-day)
tdo = days of oxygen supply at spring turnover = 12 zhyp / hod
zhyp = mean hypolimnetic depth (m)

			N						
lake	darea	sarea	/ zm	zm-hg	ZX	t	ztherm	zhyp	
Bomoseen	95.70	9.57	8.20	-	19.80	1.90	10.00	3.60	
Carmi	30.87	5.57	6.20	5.44	10.10	1.80	8.00	0.94	
Cedar	3.33	0.46	2.00	1.92	4.00	0.89	0.00	0.00	
Curtis	3.73	0.31	3.30	3.32	9.80	0.46	0.00	0.00	
Elmore	20,48	0.91/	3.40	3.49	5.20	0.17	0.00	0.00	
Fairfield	15.64	1-88/	7.10	7.23	12.80	1.00	8.00	2.84	111
Harveys	20.68	(1.68)	17.702	22.91	44.20	3.30	10.00	17.10	10.0
Hortonia	17.86	1.82	5.50	5.59	18.30	1.30	11.00	3.63	
Iroquois	8.92	0.83	5.90	5.78	11.30	1.60	7.50	2.30	
Morey	20.68	2.18	7.60	8.30	13.10	1.80	9.00	2.00	
Parker	21.49	0.97	7.70	7.61	14.70	0.52	8.00	3.05	
St Cather	30.16	3.45	10.90	10.72	19.50	2.50	10.00	5.42	
Shelburne	19.27	1.82	3.60	3.61	7.90	0.78	0.00	0.00	
Star	2.87	0.23	1.50	1.48	2.40	0.18	0.00	0.00	
Winona	11.30	0.95	1.20	1.02	2.70	0.32	0.00	0.00	
			ļ	20					
				- AU					

Lake Morphometry - I

darea= total drainage area (km2)
sarea = lake surface area (km2)
zm = mean depth (from classification report) (m)
zm=hg = mean depth (calculated from hypsiographs) (m)
zx = maximum depth (m)
t = hydraulic residence time (yrs)
ztherm = thermocline depth (m)
zhyp = mean hypolimnion depth (m)

lake	elev	maxelev	shore	runoff	voldev	shordev	ulakfac
Bomoseen	411.00	2034.00	34610.00	0.43	1.24	3.15	15.95
Carmi	435.00	861.00	12816.00	0.62	1.84	1.53	0.61
Cedar	492.00	900.00	2665.00	0.31	1.50	1.11	0.00
Curtis	1219.00	1707.00	5122.00	0.60	1.01	2.59	0.00
Elmore	1139.00	2000.00	4218.00	0.89	1.96	1.25	0.77
Fairfield	550.00	1130.00	9048.00	0.85	1.66	1.86	0.00
Harveys	893.00	2379.00	6338.00	0.43	1.20	1.39	0.00
Hortonia	484.00	1125.00	12651.00	0.43	0.90	2.64	5.01
Iroquois	684.00	1250.00	5201.00	0.34	1.57	1.61	0.00
Morey	416.00	1776.00	7662.00	0.45	1.74	1.46	0.00
Parker	1299.00	2157.00	4830.00	0.67	1.57	1.38	0.26
St Cather	484.00	2100.00	15820.00	0.50	1.68	2.40	1.28
Shelburne	330.00	830.00	7423.00	0.44	1.37	1.55	0.00
Star	1851.00	2300.00	2150.00	0.67	1.88	1.26	0.00
Winona	467.00	1806.00	4152.00	0.32	1.33	1.20	0.00

Lake Morphometry - II

elev = surface elevation (ft, msl)
maxelev = maximum watershed elevation (ft, msl)
shore = shoreline length (m)
runoff = runoff rate from watershed (m/yr)
voldev = volume development ratio
shordev = shoreline development ratio
ulakfac = upstream lake P retention factor (km2)

lake	conif	hdwd	mxdf	untld	tild	urban	lake	ulake	wetln
Bomoseen LS	0.092	0.514	0.138	0.060	0.010	0.010	0.100	0.020	0.057
Bomoseen PM	0.081	0.453	0.122	0.069	0.030	0.069	0.100	0.020	0.057
Bomoseen XX	0.082	0.462	0.124	0.067	0.025	0.063	0.100	0.020	0.057
Carmi LS	0.018	0.278	0.102	0.222	0.121	0.000	0.180	0.002	0.076
Carmi PM	0.017	0.253	0.093	0.120	0.200	0.060	0.180	0.002	0.076
Carmi XX	0.016	0.248	0.091	0.207	0.120	0.060	0.180	0.002	0.076
Cedar LS	0.142	0.286	0.142	0.137	0.119	0.000	0.138	0.000	0.034
Cedar PM	0.094	0.189	0.094	0.030	0.360	0.060	0.138	0.000	0.034
Cedar XX	0.123	0.248	0.124	0.173	0.130	0.030	0.138	0.000	0.034
Curtis LS	0.248	0.468	0.091	0.090	0.010	0.000	0.083	0.000	0.010
Curtis PM	0.137	0.259	0.050	0.080	0.220	0.161	0.083	0.000	0.010
Curtis XX	0.162	0.305	0.059	0.229	0.072	0.080	0.083	0.000	0.010
Elmore LS	0.288	0.493	0.065	0.033	0.022	0.000	0.044	0.005	0.049
Elmore PM	0.222	0.379	0.050	0.090	0.120	0.040	0.044	0.005	0.049
Elmore XX	0.249	0.424	0.056	0.099	0.033	0.040	0.044	0.005	0.049
Fairfield LS	0.102	0.612	0.074	0.049	0.029	0.000	0.120	0.000	0.014
Fairfield PM	0.091	0.548	0.067	0.030	0.070	0.060	0.120	0.000	0.014
Fairfield XX	0.094	0.565	0.069	0.047	0.031	0.060	0.120	0.000	0.014
Harveys LS	0.427	0.291	0.073	0.063	0.011	0.000	0.080	0.000	0.055
Harveys PM	0.316	0.215	0.054	0.110	0.140	0.030	0.080	0.000	0.055
Harveys XX	0.345	0.235	0.059	0.178	0.029	0.019	0.080	0.000	0.055
Hortonia LS	0.104	0.501	0.161	0.040	0.010	0.000	0.102	0.033	0.048
Hortonia PM	0.084	0.404	0.130	0.110	0.030	0.060	0.102	0.033	0.048
Hortonia XX	0.090	0.433	0.139	0.076	0.019	0.060	0.102	0.033	0.048
Iroquois LS	0.095	0.364	0.069	0.231	0.088	0.000	0.093	0.000	0.061
Iroquois PM	0.085	0.326	0.062	0.000	0.272	0.101	0.093	0.000	0.061
Iroquois XX	0.077	0.294	0.056	0.231	0.088	0.101	0.093	0.000	0.061
Morey LS	0.188	0.613	0.069	0.010	0.010	0.000	0.105	0.000	0.004
Morey PM	0.166	0.543	0.061	0.100	0.010	0.010	0.105	0.000	0.004
Morey XX	0.166	0.543	0.061	0.085	0.010	0.025	0.105	0.000	0.004
Parker LS	0.438	0.331	0.097	0.061	0.010	0.000	0.045	0.002	0.015
Parker PM	0.201	0.152	0.045	0.130	0.380	0.030	0.045	0.002	0.015
Parker XX	0.234	0.177	0.052	0.317	0.136	0.023	0.045	0.002	0.015
St Cath LS	0.137	0.559	0.118	0.030	0.010	0.010	0.114	0.003	0.019
St Cath PM	0.106	0.429	0.090	0.060	0.129	0.050	0.114	0.003	0.019
St Cath XX	0.112	0.455	0.095	0.120	0.041	0.040	0.114	0.003	0.019
Shelburne LS	0.047	0.125	0.059	0.362	0.166	0.010	0.094	0.000	0.137
Shelburne PM	0.035	0.091	0.043	0.030	0.540	0.030	0.094	0.000	0.137
Shelburne XX	0.040	0.104	0.049	0.375	0.172	0.030	0.094	0.000	0.137
Star LS	0.318	0.366	0.155	0.020	0.010	0.020	0.080	0.000	0.031
Star PM	0.275	0.316	0.134	0.123	0.010	0.031	0.080	0.000	0.031
Star XX	0.277	0.318	0.135	0.118	0.010	0.031	0.080	0.000	0.031
Winona LS	0.118	0.428	0.082	0.119	0.028	0.009	0.084	0.000	0.131
Winona PM	0.091	0.330	0.063	0.187	0.092	0.020	0.084	0.000	0.131
Winona XX	0.099	0.357	0.069	0.160	0.080	0.020	0.084	0.000	0.131

Land Use Fractions

conif = conifer forest hdwd = hardwood forest untld = untilled agriculture tild = tilled agriculture urban = urban lake = lake surfae area ulake = upstream lakes wetln = wetlands (exclusive of upstream lakes)

lake	tfor	unt ld	tild	urban	lake	ulake	wet ln
Bomoseen LS	17 573	1418	236	236	2364	468	1343
Bomoseen PM	15490	1636	701	1636	2364	468	1343
Bomoseen XX	15788	1584	591	1500	2364	468	1343
Carmi LS	3036	1696	925	0	1376	12	580
Carmi PM	2761	915	1524	.457	1376	12	580
Carmi XX	2707	1578	915	457	1376	12	580
Cedar LS	470	113	98	0	114	0	28
Cedar PM	311	25	296	49	114	0	28
Cedar XX	407	142	107	25	114	0	28
Curtis LS	744	83	9	0	77	0	9
Curtis PM	411	74	203	148	77	0	9
Curtis XX	485	211	66	74	77	0	9
Elmore LS	4282	168	111	0	225	24	249
Elmore PM	3297	456	606	202	225	24	249
Elmore XX	3689	502	168	202	225	24	249
Fairfield LS	3044	188	113	0 -	464	0	54
Fairfield PM	2727	116	270	232	464	0	54
Fairfield XX	2812	181	120	232	464	0	54
Harveys LS	4042	321	54	0	410	0	281
Harveys PM	2987	562	715	153	410	0	281
Harveys XX	3266	[`] 907	148	96	410	0	281
Hortonia LS	3381	178	45	0	450	146	212
Hortonia PM	2722	485	132	265	450	146	212
Hortonia XX	2919	335	85	265	450	146	212
Iroquois LS	1163	508	193	0	205	0	134
Iroquois PM	1043	0	599	222	205	0	134
Iroquois XX	940	508	194	222	205	0	134
Morey LS	4445	51	51	0	538	0	22
Morey PM	3934	511	50	52	538	0	22
Morey XX	3935	434	50	128	538	0	22
Parker LS	4599	325	54	0	240	12	78
Parker PM	2113	690	2016	159	240	12	78
Parker XX	2458	1680	7 20	120	240	12	78
St Cath LS	6060	224	74	- 74	852	21	144
St Cath PM	4656	444	962	370	852	21	144
St Cath XX	4933	894	305	300	852	21	144
Shelburne LS	1101	1722	788	49	450	0	650
Shelburne PM	805	143	2569	143	450	Ő	650
Shelburne XX	917	1784	816	143	450	0	650
Star LS	595	14	7	14	57	Ō	22
Star PM	514	87	7	22	57	0	22
Star XX	518	83	7	22	57	õ	22
Winona LS	17 53	333	77	26	235	ů	367
Winona PM	1352	523	258	56	235	õ	367
Winona XX	1464	447	223	56	23.5	ŏ	367
						_	

Land Uses - Acres

tfor = total forest untld = untilled agriculture tild = tilled agriculture urban = urban lake = lake surface area ulake = upstream lakes wetln = wetlands (exclusive of upstream lakes)

:

lake	seas-res	perm-res	day-use	nt-use	sload
Bomoseen	269.0	90.0	6929.0	12765.0	718.0
Carmi	225.0	75.0	18709.0	33322.0	679.4
Cedar	31.0	5.0	0.0	0.0	61.5
Curtis	30.0	5.0	0.0	0.0	60.0
Elmore	120.0	25.0	21371.0	10730.0	313.7
Fairfield	100.0	0.0	0.0	0.0	150.0
Harveys	85.0	17.0	0.0	0.0	178.5
Hortonia	50.0	17.0	0.0	0.0	126.0
Iroquois	30.0	10.0	0.0	0.0	75.0
Morey	.75.0	25.0	0.0	68000.0	373.8
Parker	96.0	4.0	0.0	0.0	156.0
St Cather	280.0	90.0	40212.0	25304.0	814.4
Shelburne	0.0	0.0	0.0	0.0	0.0
Star	6.0	1.0	0.0	0.0	12.0
Winona	7.0	0.0	0.0	0.0	10.5

Shoreline Septic Use Data

seas-res = number of seasonal, shoreline residences
perm-res = number of permanent, shoreline residences
day-use = daytime use of state parks/resorts
night-use = overnight use of state parks/resorts
sload = computed shoreline septic use (capita/yr)

= 3 (perm-res + .5 seas-res) + (day-use/2 + night-use)/365

3-115 7:1-35

lake	ulakfac	sload	otherld	zbasin
Bomoseen	15.95	717.97	0.00	8.20
Carmi	0.61	679.43	0.00	5.44
Cedar	0.00	61.50	0.00	1.92
Curtis	0.00	60.00	0.00	3.32
Elmore	0.77	313.68	0.00	3.49
Fairfield	0.00	150.00	0.00	7.23
Harveys	0.00	178.50	0.00	17.70
Hortonia	5.01	126.00	0.00	8.90
Iroquois	0.00	75.00	0.00	5.78
Morey	0.00	373.82	0.00	8.30
Parker	0.26	156.00	0.00	7.61
St Cather	1.28	814.42	0.00	10.72
Shelburne	0.00	0.00	0.00	3.61
Star	0.00-	12.00	0.00	1.48
Winona	0.00	10.50	0.00	1.02

Other Model Input Variables

ulakfac = upstream lake P retention factor (km2) sload = shoreline septic use (capita/yr) otherld = other direct P loading (kg/yr) zbasin = mean depth of stratified part of lake (m)

Soils Data - by Lake

LAKE	%	SOIL	ASSOCIATION	ORIGIN	HSG
Eomoseen	80	Nassa	au-Dutchess	Т	C/D B
Bomoseen	10	Dutcl	ness-Nassau	Т	B C/D
Bomoseen	10	Berna	ardston-Pittston	Т	CC
Carmi	45	Peru	-Stowe	Т	СС
Carmi	45	Cabot	t-Westbury	T	DC
Carmi	10	Carl	isle-Terric	Т	ÐD
Cedar	70	Nell:	is-Amenia	T	ВВ
Cedar	30	Berk	shire-Marlo	Т	ВС
Curtis	90	Glov	er-Calais	Т	C/D C
Curtis	10	Cala	is-Buckland	T	СС
Elmore	50	Peru	-Marlo	T	СС
Elmore	30	Lyman	n-Marlo-Peru	T	C/D C (
Elmore	20	Cabo	t-Peru	T	DC
Fairfield	60	Wood	stock-Tunbridge	Т	СС
Fairfield	15	Peru	-Stowe	T	СС
Fairfield	10	Carl	ise-Terric Med.	Т	DD
Fairfield	10	Wind	sor-Missisquoi	S	A A
Fairfield	- 5	Scan	tic-Raynham-Bing.	S	ССВ
Harveys	70	Paxt	on-Woodbridge	Т	СС
Harveys	15	Wood	stock-Colrain	Ť	СВ
Harveys	15	Muck	& Peat-Peacham	Т	D
Hortonia	70	Dutc	hess-Nassau	T	B C/D
Hortonia	30	Berna	ardston-Pittston	Т	C C ·
Iroquois	33	Peru	-Cabot	Т	CD
Iroquois	33	Lyma	n-Marlou	Т	C/D C
Iroquois	33	Peru	-Marlou	Т	СС
Morey	80	Tunb	ridge-Woodstock-Coli	T T	ССВ
Morey	20	Tunb	ridge-Woodstock-Buck	(1 T	ссс
Parker	50	Cabo	t-Buckland	Т	DC
Parker	40	Glov	er-Calais	Т	C/D C
Parker	5	Buck	land-Calais	Т	сс
Parker	5	Muck	& Peat Peacham	Т	D
St Cather	70	Nass	au-Dutchess	Т	C/D B
St Cather	25	Bern	ardston-Pittstown	Т	C' C
St Cather	5	Stoc	kbridge-Amenia	Т	ВВ
Shelburne	50	Verg	ennes-Covington	S	DD
Shelburne	25	Muck	& Peat	S	DD
Shelburne	25	Farm	ington-Nellis-Stockh	or T	BB
Star	60	Peru	-Marlo-Lyman	Ť	C C C/I
Star	30	Mar1	o-Peru-Lyman	Т	CCC/
Star	10	Lyma	n-Marlo-Peru	T	C/D C
Winona	40	Lyma	n-Berkshire-Marlow	Т	C/D B
Winona	20	Muck	& Peat Assoc	S	D
Winona	20	Ravn	ham-Amenia	S	СВ
Winona	10	Berk	shire-Marlow	T	вс
Winona	10	Colt	on-Stetson-Adams	S	ABA
			۔ وہ کے ناہ سے کے کہ بی جار بہ بند جا جا جا جا جا جا جا جا		

% = approx. percent of drainage basin in given assoc. ORIGIN = soil origin (S=sedimentary , T=Till) HSG = hydrologic soil group

Soils Data

AdamsBSAmeniaBSBerkshireBTBernardstonCTBinghamvilleB.49BucklandCTCabotD.28CalaisCTCarlisleA/DTColrainB.20CovingtonDSDutchessBTFarmingtonC/D.32
AmeniaBSBerkshireBTBernardstonCTBinghamvilleB.49BucklandCTCabotD.28TCalaisCTColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32
BerkshireBTBernardstonCTBinghamvilleB.49BucklandCTCabotD.28TCalaisCTCarlisleA/DTColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
BernardstonCTBinghamvilleB.49SBucklandCTCabotD.28TCalaisCTCarlisleA/DTColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
BinghamvilleB.49SBucklandCTCabotD.28TCalaisCTCarlisleA/DTColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
BucklandCTCabotD.28TCalaisCTCarlisleA/DTColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
CabotD.28TCalaisCTCarlisleA/DTColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
CalaisCTCarlisleA/DTColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
CarlisleA/DTColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
ColrainB.20TColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
ColtonASCovingtonDSDutchessBTFarmingtonC/D.32T
CovingtonDSDutchessBTFarmingtonC/D.32T
Dutchess B T Farmington C/D .32 T
Farmington C/D .32 T
Glover C/D .20 T
Lyman C/D T
Marlo C T
Missisquoi A .17 S
Nassau C/D T
Nellis B T
Paxton C T
Peru C .24 T
Pittstown C T
Raynham C S
Scantic C S
Stetson B S
Stockbridge B T
Stowe C .24 T
Terric B T
Tunbridge C .20 T
Vergennes D S
Windsor A .17 S
Woodbridge C T
Woodstock C .20 T

HSG = hydrologic soil group EROD = erodibility factor ORIGIN = soil origin (S=sedimentary,T=till)

APPENDIX B

LEAP Subroutine and Variables

Revised Lake Model Subroutine Input Variable List (Lake Morey) Output Variable List

```
3480 REM revised lake model subroutine
3490 Al=X(1)+X(2)+X(3)+X(4)+X(5)+X(6)+X(8)+X(9): 'water shed
3500 Y(2)=X(1)*X(24)+X(2)*X(25)+X(3)*X(26)+X(8)*X(30)+X(9)*X(31)
3510 Y(2)=X(35)*X(15)*(Y(2)-X(20)*X(10))
                                                        : natural p
3520 Y(3)=X(35)*X(15)*(X(4)*X(27)+X(5)*X(28))
                                                        :'agric p
3530 Y(4)=X(35)*X(15)*X(6)*X(29)
                                                        : 'urban p
3540 Y(5)=X(7)*X(32)
                                                         : atmos load
3550 Y(6) = X(16) \times X(21) + X(17)
                                                        : septic
3560 Y(1)=Y(2)+Y(3)+Y(4)+Y(5)+Y(6)
                                                        : total load
3570 Y(7)=Y(1)/((A1+X(7))*X(15))
                                                        : inflow conc
3580 Y(8) = (A1 + X(7)) * X(15) / X(7)
                                                        : 'overflow rate
3590 Y(9) = X(11) / Y(8)
                                                         : residence time
3600 Y(10)=1!/(1!+.82*(Y(9)^{.45})*X(36))
                                                         : 1-rp
3610 Y(11)=Y(10)*Y(7)
                                                        : p spring
3620 Y(12)=X(37)*EXP(-.69+.94*LOG(Y(11)))
                                                         : chl-a
3630 Y(13)=X(38)*EXP(-.354+1.088*LOG(Y(11)))
                                                         : chl-a max
3640 Y(14)=X(39)/(.025*Y(12)+X(23))
                                                         : secchi depth
3650 Z3=-15.6 + 46.1*LOG(Y(11))/2.303
                                                         :'tsi
3655 IF X(13)=0 AND X(14)=0 THEN Y(15)=0:Y(16)=0:Y(17)=0:GOTO 3720
3660 \ Z5=LOG(X(18))
3670 Y(15) = -3.58 + .0204 \times Z3 + 1.976 \times Z5 - .3846 \times Z5 \times Z5
3680 Y(15) = X(40) * (10^{Y}(15))
                                                          : hod
3690 IF X(14)<>0 THEN Y(16)=X(14):GOTO 3710
3700 Y(16) = X(11)*(X(12)-X(13))/(X(12))
                                                          : hypolimnetic depth
3710 Y(17) = X(22)*Y(16)/Y(15)
                                                          : days of oxygen supply
3720 Y(18) = Y(10) * Y(9)
                                                          : p residence time
3730 \ Z3=Y(1)/((1!+.82*(Y(9)^.45))*(X(7)*Y(8)))
3740 Y(19) = 1E - 03 * (23^{.82}) * (Y(1)/(X(7)))^{.18}
                                                        : discriminant score
3750 \ Z3 = -(Y(19)^{(-.25)})
3760 Y(20) = EXP(-18.51-20.49*Z3)
3770 Y(21) = EXP(-36.77-29.33*23)
3780 Y(22) = EXP(-53.8-35.65*Z3)
3790 \ Z3 = Y(20) + Y(21) + Y(22)
3800 Y(20) = Y(20)/Z3
                                                         : prob(eutrophic)
3810 Y(21) = Y(21)/Z3
                                                         : prob(mesotrophic)
3820 Y(22) = Y(22)/Z3
                                                          : prob(oligotrophic)
3830 RETURN
0k
```

LIST INPUT VARIABLES

input file 1 runl

INPUT VARIABLES

CODE

4

Under

Undar

mil

urhan

tak s

111 C

37 ω 6 5 34 3331 39 38 30 28 27 26 24 ß 22 21 20 18 5 5 5 5 4 5 56 ∞ σ σÞ ŝ Septic Runoff Error Error Dummy Dummy Hypolimnion Depth Wetland Area Upstr Lake Area Lake Urban Untilled Agric Area **Hardwood For Area** Conifer Wetland Untilled Agric Hardwood For Turbidity/Color (1/m) Spring, DO Maximum Depth Upstr Mixed For Error Error Error Atmos Upstream Urban Tilled Agric P Mixed For Conifer Inflow Dummy Basin Extra Shoreline Septic Use Thermocline Mean Tilled Agric Area r Lake Depth ١ Area 1 t 1 ы ъ Mean Depth Ł 1 P Load Area Conc of Upst Lakes (P Factor (kg/cap-yr) Load kg/km2-yr Anone Roud my/madmy For Щ. For P mg/m3 Ch1-max Secchi Chl-a P Reten Watshd mg/m3 Lake P Area Ы g/m3 ጓ Ret ы Depth km 2 ₿ Area P mg/m3 P mg/m3 ng/m3 km2 kg/yr km2 Fac ₿ ю mg/m3 mg/m3 km 2 ۲<u>ا</u> Cm/gm ᄇ km 2 ki 2 88 ۲<u>ا</u> ۲<u>6</u> 2 Km2 cap/yr) B B B B 300.00 57.00 139.00 15.00 15.00 15.00 30.00 0.00 8.10 9.00 15.00 15,00 12.00 5 11.23 0.05 0.00 0.00 2.00 0.09 0.20 0.00 0.00 0.00 2.18 MEAN 1.00 œ 1.26 1.00 ω 1.00 .00 000 .10 £ SiD 10.00 3 0.39 0.55 0,30 0.00 0.00 3.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 ω 0.00 0.00 0.00 \mathbf{O} ω ω ŝ 0 ŝ 0 0 0 Φ 0 Ö Ó ŝ Φ o O 00 .30 .00 .00 DEV **.**39 00 .00 •00 .0 .01 .00 .00 13 .00 8 .00 .00 80 8

\$

Error

1

HOD

.00

 \circ

5

4 1 4 44 4 4 44 4 4 1 4 4

l jur Ace

ere

2
LIST OUTPUT VARIABLES

input file - runl DEPENDENT VARIABLES CODE 1 Total P Load kg/yr 4 2 Undeveloped P Load kg/yr 2 3 Agricultural P Load kg/yr 2 4 Urban Runoff P Load kg/yr 2 5 Atmospheric P Load kg/yr 2 6 Septic P Load kg/yr 2 - Julerine Lond 7 Inflow P Conc mg/m3 2 4 2. Influ Plane. 8 Overflow Rate m/yr 6 9 Residence Time yr 2 2 10 1 - P Retent Coef 11 P Spring mg/m3 4 12 Chlorophyll-a mg/m3 4 13 Max Chl-a mg/m3 4 14 Secchi Depth m 4 15 Oxygen Depl Rate g/m2-day 4 16 Hypol Depth m 2 17 Days of 02 Supply 4 18 P Residence Time yrs 2 19 TS Discr Score 2 20 Prob(Eutrophic) 1 21 Prob(Mesotrophic) 1 22 Prob(Oligotrophic) 1 23 Dummy 0 24 Dummy 0 25 Dummy 0

APPENDIX C

LEAP Output By Lake

runl-cancitivity				Bo	noseen
PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
Total P Load kg/yr 2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban Runoff P Load kg/yr 5 Atmospheric P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Inflow P Conc mg/m3 8 Overflow Rate m/yr 9 Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Residence Time yrs 19 TS Discr Score 20 Prob(Eutrophic) 22 Prob(Oligotrophic)	1145.72 358.04 100.36 364.31 287.10 35.90 27.74 4.32 1.90 0.48 13.24 5.69 11.67 4.50 0.41 3.60 105.62 0.91 0.02 0.00 0.54 0.46	377.29 165.11 43.95 174.90 95.70 7.18 7.27 1.30 0.57 0.14 5.02 2.92 6.62 2.30 0.17 0.00 44.89 0.33 0.00 0.26 0.26	0.33 0.46 0.44 0.33 0.20 0.26 0.30 0.29 0.30 0.29 0.30 0.51 0.51 0.51 0.42 0.00 0.43 0.25 1.99 0.48 0.57	592.99 142.36 41.80 139.47 147.40 24.06 16.42 2.36 1.05 0.26 6.21 2.04 3.75 1.62 0.18 3.60 45.14 0.44 0.01 -0.01 0.02 -0.06	$\begin{array}{c} 2213.64\\ 900.51\\ 240.97\\ 951.61\\ 559.19\\ 53.55\\ 46.86\\ 7.88\\ 3.45\\ 0.86\\ 28.26\\ 15.89\\ 36.30\\ 12.51\\ 0.96\\ 3.60\\ 247.12\\ 1.89\\ 0.03\\ 0.01\\ 1.05\\ 0.98 \end{array}$
runl-sensitivity	·				
PREDICTED VARIABLE: 11 P Spring EAN = 13.2436 STD. DEV	mg/m3 . = 5.018	62 CV	/ = .3789	48	
INPUT VARIABLE	MEAN	CV	DY/DX	DLY/DLX	۶ VAR.
<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 8 Upstr Lake Area km2 9 Wetland Area km2 10 Upstr Lake Ret Fac km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 20 Inflow Conc of Upst Lakes (mg 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 30 Upstream Lake P mg/m3 30 Upstream Lake P mg/m3 30 Upstream Lake P mg/m3</pre>	$\begin{array}{c} 7.86\\ 44.17\\ 11.89\\ 6.41\\ 2.39\\ 6.07\\ 9.57\\ 1.89\\ 5.44\\ 15.95\\ 8.20\\ 0.43\\ 717.97\\ 15.00\\ 0.05\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 39.00\\ 15.00\\ 15.00\\ 30.00\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	$\begin{array}{c} -0.031 \\ -0.031 \\ -0.031 \\ -0.031 \\ 0.178 \\ 0.587 \\ -0.084 \\ -0.031 \\ -0.031 \\ -0.031 \\ -0.075 \\ -0.378 \\ -1.405 \\ 0.001 \\ -0.080 \\ 8.299 \\ 0.039 \\ 0.220 \\ 0.039 \\ 0.220 \\ 0.039 \\ 0.220 \\ 0.039 \\ 0.027 \\ 0.012 \\ 0.030 \\ 0.009 \\ 0.027 \\ 0.111 \end{array}$	$\begin{array}{c} -0.018\\ -0.103\\ -0.028\\ -0.015\\ 0.032\\ 0.269\\ -0.060\\ -0.004\\ -0.013\\ -0.090\\ -0.234\\ -0.046\\ 0.031\\ -0.090\\ 0.031\\ 0.044\\ 0.250\\ 0.067\\ 0.036\\ 0.051\\ 0.318\\ 0.011\\ 0.031\\ 0.251\end{array}$	0.000 0.0226 0.037 0.022 3.502 0.003 0.026 4.858
-SE Atmos P Load kg/km2-yr 35 Error - Watshd 36 Error - P Reten	1.00	0.300	9.510	0.718	32.317 56.932

ومراجع فالمتلق والاقتصاص مستعص الاستناب والم

rupl-consitiuity				Carr	ห่า
PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
<pre>1 Total P Load kg/yr 2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban Runoff P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Inflow P Conc mg/m3 8 Overflow Rate m/yr 9 Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Residence Time yrs 19 TS Discr Score 20 Prob(Eutrophic) 21 Prob(Mesotrophic) 22 Prob(Oligotrophic)</pre>	$\begin{array}{c} 670.51\\ 118.82\\ 190.79\\ 159.83\\ 167.10\\ 33.97\\ 34.95\\ 3.44\\ 1.58\\ 0.50\\ 17.41\\ 7.36\\ 15.71\\ 3.79\\ 0.33\\ 0.94\\ 34.70\\ 0.79\\ 0.02\\ 0.01\\ 0.74\\ 0.25\\ \end{array}$	185.74 46.26 72.26 68.47 55.70 6.79 8.50 0.72 0.33 0.14 6.30 3.70 8.71 1.99 0.13 0.00 14.28 0.25 0.01 0.02 0.16 0.18	$\begin{array}{c} 0.28\\ 0.39\\ 0.38\\ 0.43\\ 0.33\\ 0.20\\ 0.24\\ 0.21\\ 0.21\\ 0.21\\ 0.28\\ 0.36\\ 0.50\\ 0.55\\ 0.52\\ 0.41\\ 0.00\\ 0.41\\ 0.32\\ 0.24\\ 1.55\\ 0.22\\ 0.71 \end{array}$	385.30 54.54 89.45 67.86 85.79 22.77 21.49 2.27 1.04 0.29 8.44 2.69 5.19 1.33 0.14 0.94 15.23 0.42 -0.03 0.42 -0.11	1166.85 258.88 406.92 376.48 325.47 50.68 56.84 5.23 2.39 0.87 35.90 20.10 47.60 10.82 0.74 0.94 79.04 1.49 0.04 0.05 1.05 0.61
runl-sensitivity					
REDICTED VARIABLE: 11 P Spring MEAN = 17.4114 STD. DEV.	mg/m3 = 6.300	23 CV	= .3618	45	
INPUT VARIABLE	MEAN	cv	DY/DX	DLY/DLX	<pre>% VAR.</pre>
<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 8 Upstr Lake Area km2 9 Wetland Area km2 10 Upstr Lake Ret Fac km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 20 Inflow Conc of Upst Lakes (mg 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 29 Urban P mg/m3 30 Upstream Lake P mg/m3 31 Wetland P mg/m3 32 Atmos P Load kg/km2-yr 35 Error - Watshd 36 Error - P Reten</pre>	0.50 7.65 2.81 6.39 3.70 1.85 5.57 0.05 2.35 0.61 5.44 0.62 679.43 15.00 10.00 1.00 1.00 1.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.209 0.200 0.550	$\begin{array}{c} -0.195 \\ -0.194 \\ -0.194 \\ -0.194 \\ 0.483 \\ 1.806 \\ -0.361 \\ -0.198 \\ -0.194 \\ -0.242 \\ -0.719 \\ -2.042 \\ 0.001 \\ -0.010 \\ 17.643 \\ 0.008 \\ 0.123 \\ 0.045 \\ 0.103 \\ 0.045 \\ 0.103 \\ 0.060 \\ 0.030 \\ 0.001 \\ 0.038 \\ 0.145 \\ 12.190 \\ -8.693 \end{array}$	$\begin{array}{c} -0.006\\ -0.085\\ -0.031\\ -0.071\\ 0.103\\ 0.192\\ -0.115\\ -0.001\\ -0.026\\ -0.009\\ -0.225\\ -0.073\\ 0.051\\ -0.009\\ 0.051\\ 0.007\\ 0.106\\ 0.039\\ 0.089\\ 0.196\\ 0.238\\ 0.001\\ 0.033\\ 0.249\\ 0.700\\ -0.499\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.002\\ 0.078\\ 0.000\\ 0.002\\ 0.346\\ 0.046\\ 0.241\\ 0.357\\ 2.159\\ 0.000\\ 0.033\\ 5.271\\ 33.693\\ 57.595\end{array}$

PREDICTED VARIABLE NEAN STD DEV CV 5% 95 I Total P Load kg/yr 39.73 12.77 0.32 20.89 75.5 2 Undeveloped P Load kg/yr 10.34 5.42 0.52 3.63 29.5 3 Agricultural P Load kg/yr 10.34 5.42 0.52 3.63 29.5 4 Urban Runoff P Load kg/yr 3.08 0.61 0.20 2.06 4.5 5 Atmospheric P Load kg/yr 3.08 0.61 0.28 22.12 66.7 7 Inflow P Conc mg/m3 38.43 10.61 0.28 22.12 66.7 10 1 - P Retent Coef 0.57 0.14 0.25 0.34 0.9 11 P Spring mg/m3 21.78 7.24 0.33 11.0 42.3 12 Abroph J a mg/m3 2.04 10.66 0.53 6.92 58.0 13 Max Ch1-a mg/m3 2.04 10.66 0.00 0.00 0.00 0.00 14 Secchi Depth m 0.00 0.00 0.00 0.00 0.01 1.11	runl-sensitivity				Ca	dan
1 Total P Load kg/yr 39.73 12.77 0.32 20.89 75.5 2 Undeveloped P Load kg/yr 8.20 4.33 0.53 2.85 3 Agricultural P Load kg/yr 10.34 5.42 0.52 3.63 29.5 4 Urban Runoff P Load kg/yr 13.80 4.60 0.33 7.09 26.8 5 Atmospheric P Load kg/yr 3.80 0.61 0.20 2.06 4.5 7 Inflow P Conc mg/m3 36.43 10.61 0.28 22.12 66.7 9 Residence Time yr 0.86 0.36 0.41 0.37 1.9 10 1 - P Retent Coef 0.57 0.14 0.28 22.12 66.7 11 P Spring mg/m3 21.78 7.24 0.33 11.04 42.3 12 Abrosphila mg/m3 20.04 10.66 0.53 6.52 58.0 13 Max Chl-a mg/m3 20.04 10.66 0.53 6.52 58.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
runl-sensitivity PEDICTED VARIABLE: 11 P Spring mg/m3 STD. DEV. = 7.24246 CV = .332572 INPUT VARIABLE I Conifer For Area km2 0.41 0.000 -2.708 -0.051 0.00 2 Hardwood For Area km2 0.83 0.000 -2.706 -0.051 0.00 2 Hardwood For Area km2 0.43 0.000 -2.707 -0.051 0.00 3 Mixed For Area km2 0.43 0.000 -2.707 -0.072 0.00 4 Untilled Agric Area km2 0.43 0.000 4.430 0.088 0.00 6 Urban Area km2 0.46 0.000 1.884 0.00 1.660 0.041 0.00 9 Wetland Area km2 0.11 0.000 -2.716 -0.124 0.00 11 Mean Depth m 1.92 0.000 -2.966 -0.194 0.00 12 Septic P Factor (kg/cap-yr) 0.31 0.419 -15.951 -0.227 8.19 16 Shoreline Septic Use cap/yr 61.50 0.000 0.077 0.21 24 0.140 0.097 0.33 21 Septic P Factor (kg/cap-yr) 0.05	<pre>1 Total P Load kg/yr 2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban Runoff P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Inflow P Conc mg/m3 8 Overflow Rate m/yr 9 Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Residence Time yrs 19 TS Discr Score 20 Prob(Eutrophic) 21 Prob(Mesotrophic)</pre>	39.73 8.20 10.34 4.31 13.80 3.08 38.43 2.25 0.86 0.57 21.78 9.08 20.04 3.26 0.00 0.00 0.00 0.00 0.49 0.03 0.80 0.17	12.77 4.33 5.42 2.42 4.60 0.61 10.61 0.94 0.36 0.14 7.24 4.40 10.66 1.72 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.09 0.12	$\begin{array}{c} 0.32\\ 0.53\\ 0.52\\ 0.56\\ 0.33\\ 0.20\\ 0.28\\ 0.42\\ 0.41\\ 0.25\\ 0.33\\ 0.48\\ 0.53\\ 0.53\\ 0.53\\ 0.53\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.41\\ 0.22\\ 1.29\\ 0.11\\ 0.72\end{array}$	20.89 2.85 3.63 1.40 7.09 2.06 22.12 0.97 0.37 0.34 11.20 3.45 6.92 1.13 0.00 0.00 0.00 0.00 0.21 0.02 -0.04 0.63 -0.07	75.54 23.57 29.51 13.25 26.88 4.59 66.76 5.19 1.96 0.94 42.35 23.92 58.09 9.39 0.00 0.00 1.10 0.04 0.97 0.41
REDICTED VARIABLE: 11 P Spring mg/m3 STD. DEV. = 7.24246 CV = .332572 INPUT VARIABLE MEAN CV DY/DX DLY/DLX % VA 1 Conifer For Area km2 0.41 0.000 -2.708 -0.051 0.000 2 Hardwood For Area km2 0.83 0.000 -2.706 -0.103 0.000 3 Mixed For Area km2 0.41 0.000 -2.709 -0.051 0.000 4 Untilled Agric Area km2 0.43 0.000 -2.707 -0.072 0.00 5 Tilled Agric Area km2 0.43 0.000 4.430 0.088 0.00 6 Urban Area km2 0.46 0.000 1.960 0.041 0.00 9 Wetland Area km2 0.11 0.000 -2.711 -0.014 0.00 15 Runoff m/yr 0.31 0.419 -15.951 -0.227 8.19 16 Shoreline Septic Use cap/yr 61.50 0.000 0.077 0.21 24 Conifer For P mg/m3 15.00 0.200 0.077 0.21 25 Hardwood For P mg/m3 15.00 0.200 0.077 0.21 24 Conifer For P mg/m3 15.00 0.200	runl-sensitivity	0.17	0.12	0112		
INPUT VARIABLE MEAN CV DY/DX DLY/DLX % VA 1 Conifer For Area km2 0.41 0.000 -2.708 -0.051 0.00 2 Hardwood For Area km2 0.83 0.000 -2.706 -0.103 0.00 3 Mixed For Area km2 0.41 0.000 -2.709 -0.051 0.00 4 Untilled Agric Area km2 0.43 0.000 -2.707 -0.072 0.00 5 Tilled Agric Area km2 0.43 0.000 4.430 0.088 0.00 6 Urban Area km2 0.10 0.000 18.384 0.084 0.00 9 Wetland Area km2 0.11 0.000 -2.711 -0.014 0.00 11 Mean Depth m 1.92 0.000 -2.196 -0.194 0.00 15 Runoff m/yr 0.31 0.419 -15.951 -0.227 8.19 16 Shoreline Septic Use cap/yr 61.50 0.000 0.048 0.08 21 Septic P Factor (kg/cap-yr) 0.05 0.200 0.770 0.33 26 Mixed For P mg/m3 15.00 0.200 0.077 0.33 <	REDICTED VARIABLE: 11 P Spring EAN = 21.7771 STD. DEV.	mg/m3 = 7.242	46 C	V = .3325	72	
1 Conifer For Area km2 0.41 0.000 -2.708 -0.051 0.00 2 Hardwood For Area km2 0.83 0.000 -2.706 -0.103 0.00 3 Mixed For Area km2 0.41 0.000 -2.709 -0.051 0.00 4 Untilled Agric Area km2 0.43 0.000 -2.707 -0.072 0.00 5 Tilled Agric Area km2 0.43 0.000 4.430 0.088 0.00 6 Urban Area km2 0.10 0.000 18.384 0.084 0.00 7 Lake Area km2 0.11 0.000 1.960 0.041 0.00 9 Wetland Area km2 0.11 0.000 -2.196 -0.194 0.00 11 Mean Depth m 1.92 0.000 -2.196 -0.194 0.00 15 Runoff m/yr 0.31 0.419 -15.951 -0.227 8.19 16 Shoreline Septic Use cap/yr 61.50 0.000 0.077 0.21 24 Conifer For P mg/m3 15.00 0.200 0.070 0.048 0.08 25 Hardwood For P mg/m3 15.00 0.200 0.070 0.048	INPUT VARIABLE	MEAN	CV	DY/DX	DLY/DLX	% VAR.
35 Error - Watshd 1.00 0.300 12.527 0.575 26.92	<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 9 Wetland Area km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 29 Urban P mg/m3 31 Wetland P mg/m3 32 Atmos P Load kg/km2-yr 35 Error - Watshd</pre>	0.41 0.83 0.41 0.58 0.43 0.10 0.46 0.11 1.92 0.31 61.50 0.05 15.00 1.00 1.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.333 0.300	$\begin{array}{c} -2.708\\ -2.709\\ -2.709\\ -2.707\\ 4.430\\ 18.384\\ 1.960\\ -2.711\\ -2.196\\ -15.951\\ 0.027\\ 33.710\\ 0.070\\ 0.140\\ 0.070\\ 0.140\\ 0.070\\ 0.098\\ 0.074\\ 0.017\\ 0.019\\ 0.252\\ 12.527\end{array}$	$\begin{array}{c} -0.051 \\ -0.103 \\ -0.051 \\ -0.072 \\ 0.088 \\ 0.084 \\ 0.041 \\ -0.014 \\ -0.194 \\ -0.227 \\ 0.077 \\ 0.077 \\ 0.077 \\ 0.048 \\ 0.097 \\ 0.048 \\ 0.097 \\ 0.048 \\ 0.193 \\ 0.108 \\ 0.013 \\ 0.347 \\ 0.575 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.217\\ 0.084\\ 0.339\\ 0.084\\ 0.339\\ 0.084\\ 0.165\\ 0.411\\ 0.529\\ 0.006\\ 12.120\\ 26.925\end{array}$

PREDICTED VARIABLE MEAN STD DEV CV 5% 95% 1 Total P Load kg/yr 71.69 21.11 0.32 37.62 136.62 2 Undeveloped P Load kg/yr 16.67 6.48 0.39 7.74 36.33 3 Urban Runoff P Load kg/yr 9.30 3.10 0.33 4.77 18.11 1 Septic P Load kg/yr 9.30 3.10 0.33 4.77 18.11 1 Septic P Load kg/yr 7.30 0.60 0.22 0.31 4.74 1 Septic P Load kg/yr 7.30 3.10 0.33 4.77 18.11 1 Septic P Load kg/yr 7.13 1.60 0.22 0.30 0.71 10 I - P Retent Coef 0.63 0.13 0.22 0.30 0.71 10 I - P Retent Coef 0.63 6.42 53.24 22.55 11 Spring mg/m3 20.40 6.33 6.42 54.25 12 Chiorophyll-a 0.00	runl-sensitivity				Cu	rtis
1 Total P Load kg/yr 71.69 23.11 0.32 37.62 136.62 2 Undeweloped P Load kg/yr 16.77 6.48 0.39 7.74 36.33 4 Urban Runoff P Load kg/yr 24.73 10.70 0.43 10.41 55.76 5 Atmospheric P Load kg/yr 3.00 6.60 0.20 2.01 4.44 7 Inflow P Conc mg/m3 32.23 8.69 0.27 18.06 55.26 8 Overflow Rate m/yr 7.17 1.56 6.22 4.64 11.11 9 Residence Time yr 0.46 0.10 0.22 0.30 0.71 10 1 - P Retent Coef 0.63 0.13 0.20 0.42 0.95 11 P Spring mg/m3 20.40 6.82 0.33 1.045 39.82 12 Schorophyll-a mg/m3 18.67 9.96 0.53 6.42 54.25 14 Secchi Depth m 3.41 1.79 0.53 1.19 9.77 15 Oxygen Depl Rate g/m2-day 0.00 0.00 0.00 0.00 0.00 0.00 16 Tags for 20 Supply 0.00 0.00 0.00	PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	958
runl-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 STD. DEV. = 6.82163 CV = .334384 INPUT VARIABLE MEAN CV DY/DX DLY/DLX & VAR 1 Conifer For Area km2 0.60 0.000 -2.018 -0.060 0.000 2 Hardwood For Area km2 1.14 0.000 -2.015 -0.112 0.000 3 Mixed For Area km2 0.22 0.000 -2.021 -0.022 0.000 4 Untilled Agric Area km2 0.85 0.000 -2.017 -0.084 0.000 5 Tilled Agric Area km2 0.27 0.000 5.101 0.067 0.000 6 Urban Area km2 0.30 0.000 19.003 0.278 0.000 7 Lake Area km2 0.31 0.000 -6.861 -0.104 0.000 9 Wetland Area km2 0.32 0.000 -1.009 -0.164 0.000 11 Mean Depth m 3.32 0.000 -1.009 -0.164 0.000 15 Runoff m/yr 0.60 0.218 -0.202 -0.006 0.001 16 Shoreline Septic Use cap/yr 60.00 0.000 0.014 0.042 0.005 24 Conifer For P mg/m3 15.00 0.200 0.102 0.075 0.202 25 Hardwood For P mg/m3 15.00 0.200 0.193 0.142 0.722 26 Mixed For P mg/m3 15.00 0.200 0.193 0.142 0.722 26 Mixed For P mg/m3 15.00 0.200 0.145 0.106 0.402 27 Untilled Agric P mg/m3 15.00 0.200 0.145 0.106 0.402 29 Urban P mg/m3 139.00 0.223 0.051 31 Wetland P mg/m3 15.00 0.200 0.006 32 Atmos P Load kg/km2-yr 30.000 0.333 0.088	1 Total P Load kg/yr 2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban Runoff P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Inflow P Conc mg/m3 8 Overflow Rate m/yr 9 Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Residence Time yrs 19 TS Discr Score 20 Prob(Eutrophic) 21 Prob(Mesotrophic)	71.69 17.89 16.77 24.73 9.30 3.00 32.23 7.17 0.46 0.63 20.40 8.54 18.67 3.41 0.00 0.00 0.00 0.00 0.29 0.03 0.06 0.84 0.11	$\begin{array}{c} 23.11\\ 7.03\\ 6.48\\ 10.70\\ 3.10\\ 0.60\\ 8.69\\ 1.56\\ 0.10\\ 0.13\\ 6.82\\ 4.15\\ 9.96\\ 1.79\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.08\\ 0.01\\ 0.08\\ 0.01\\ 0.08\\ 0.02\\ 0.10\end{array}$	0.32 0.39 0.43 0.33 0.20 0.22 0.22 0.22 0.22 0.22 0.23 0.53 0.53 0.00 0.00 0.00 0.27 1.46 0.03 0.96	$\begin{array}{c} 37.62\\ 8.15\\ 7.74\\ 10.41\\ 4.77\\ 2.01\\ 18.80\\ 4.64\\ 0.30\\ 0.42\\ 10.45\\ 3.23\\ 6.42\\ 1.19\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.17\\ 0.02\\ -0.11\\ 0.79\\ -0.10\end{array}$	136.6239.2836.3358.7618.114.4855.2811.100.710.9539.8222.5554.259.760.000.000.000.000.000.050.220.880.32
INPUT VARIABLE MEAN CV DY/DX DLY/DLX % VAR 1 Conifer For Area km2 0.60 0.000 -2.018 -0.060 0.000 2 Hardwood For Area km2 1.14 0.000 -2.015 -0.112 0.000 3 Mixed For Area km2 0.22 0.000 -2.021 -0.022 0.000 4 Untilled Agric Area km2 0.85 0.000 -2.017 -0.084 0.000 5 Tilled Agric Area km2 0.27 0.000 5.101 0.067 0.000 6 Urban Area km2 0.31 0.000 -6.861 -0.104 0.000 9 Wetland Area km2 0.04 0.000 -2.031 -0.004 0.000 15 Runoff m/yr 0.60 0.218 -0.202 -0.006 0.001 16 Shoreline Septic Use cap/yr 60.00 0.000 0.14 0.042 0.002 24 Conifer For P mg/m3 15.00 0.200 0.102 0.075 0.202 25 Hardwood For P mg/m3 15.00 0.200 0.138 0.028 0.022 26 Mixed For P mg/m3 15.00 0.200 0.14	runl-sensitivity REDICTED VARIABLE: 11 P Spring EAN = 20.4006 STD. DEV	mg/m3 . = 6.821	.63 CV	7 = .3343	84	
1 Conifer For Area km2 0.60 0.000 -2.018 -0.060 0.000 2 Hardwood For Area km2 1.14 0.000 -2.015 -0.112 0.000 3 Mixed For Area km2 0.22 0.000 -2.021 -0.022 0.000 4 Untilled Agric Area km2 0.85 0.000 -2.017 -0.084 0.000 5 Tilled Agric Area km2 0.27 0.000 5.101 0.067 0.000 6 Urban Area km2 0.30 0.000 -2.031 -0.004 0.000 7 Lake Area km2 0.31 0.000 -6.861 -0.104 0.000 9 Wetland Area km2 0.04 0.000 -2.031 -0.004 0.000 11 Mean Depth m 3.32 0.000 -1.009 -0.164 0.000 15 Runoff m/yr 0.60 0.218 -0.202 -0.006 0.001 16 Shoreline Septic Use cap/yr 0.05 0.200 17.071 0.042 0.062 24 Conifer For P mg/m3 15.00 0.200 0.102 0.075 0.202 25 Hardwood For P mg/m3 15.00 0.200 0.0	INPUT VARIABLE	MEAN	cv	DY/DX	DLY/DLX	% VAR
35 Error - Watshd 1.00 0.300 16.900	<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 9 Wetland Area km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 29 Urban P mg/m3 31 Wetland P mg/m3 32 Atmos P Load kg/km2-yr 35 Error = Watshd</pre>	$\begin{array}{c} 0.60\\ 1.14\\ 0.22\\ 0.85\\ 0.27\\ 0.30\\ 0.31\\ 0.04\\ 3.32\\ 0.60\\ 60.00\\ 0.05\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 139.00\\ 1.00\\ 30.00\\ 1.00\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	$\begin{array}{c} -2.018\\ -2.015\\ -2.021\\ -2.017\\ 5.101\\ 19.003\\ -6.861\\ -2.031\\ -1.009\\ -0.202\\ 0.014\\ 17.071\\ 0.102\\ 0.193\\ 0.038\\ 0.145\\ 0.046\\ 0.051\\ 0.006\\ 0.088\\ 16.900\end{array}$	$\begin{array}{c} -0.060 \\ -0.112 \\ -0.022 \\ -0.084 \\ 0.067 \\ 0.278 \\ -0.104 \\ -0.004 \\ -0.164 \\ -0.006 \\ 0.042 \\$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.002 0.202 0.722 0.272 0.027 0.404 -0.178

run]-sensitivity				5lm	ore
PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
PREDICTED VARIABLE 1 Total P Load kg/yr 2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban Runoff P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Inflow P Conc mg/m3 8 Overflow Rate m/yr 9 Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Besidence Time yrs	MEAN 408.98 203.50 61.47 101.02 27.30 15.68 22.47 20.00 0.17 0.73 16.36 6.94 14.68 3.95 0.00 0.00 0.00 0.13	STD DEV 127.70 73.18 21.56 40.55 9.10 3.14 6.38 2.93 0.03 0.11 5.24 3.31 7.68 2.01 0.00 0.00 0.00 0.00 0.02	CV 0.31 0.36 0.35 0.40 0.33 0.20 0.28 0.15 0.14 0.15 0.32 0.48 0.52 0.51 0.00 0.00 0.00 0.00	5% 219.02 99.13 30.48 45.26 14.02 10.51 12.74 14.93 0.13 0.54 8.62 2.67 5.16 1.43 0.00 0.00 0.00 0.00	95% 763.69 417.76 123.96 225.46 53.17 23.40 39.65 26.80 0.23 0.98 31.05 18.01 41.80 10.92 0.00 0.00 0.00 0.00
18 P Residence Time yrs	0.13	0.02	0.20	0.09	0.19
20 Prob(Eutrophic)	0.04	0.06	1.63	-0.09	0.17
21 Prob(Mesotrophic)	0.82	0.07	0.08	0.69	0.96
22 Prob(Oligotrophic)	0.14	0.13	0.98	-0.13	0.40
REDICTED VARIABLE: 11 P Spring EAN = 16.3591 STD. DEV.	mg/m3 = 5.240	78 CV	= .3203	59	
INPUT VARIABLE	MEAN	CV	XD/YD	DLY/DLX	<pre>% VAR.</pre>
<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 8 Upstr Lake Area km2 9 Wetland Area km2 10 Upstr Lake Ret Fac km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 20 Inflow Conc of Upst Lakes (mg 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 29 Urban P mg/m3 30 Upstream Lake P mg/m3 32 Atmos P Load kg/km2-yr 35 Error - Watshd 36 Error - P Reten</pre>	5.09 8.69 1.15 2.03 0.68 0.82 0.91 0.10 1.01 0.77 3.49 0.89 313.68 15.00 1.00 1.00 1.00 1.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.550	$\begin{array}{c} -0.167 \\ -0.167 \\ -0.168 \\ -0.168 \\ 1.325 \\ 4.238 \\ -1.693 \\ -0.169 \\ -0.168 \\ -0.533 \\ -0.572 \\ 0.322 \\ 0.002 \\ -0.027 \\ 12.547 \\ 0.181 \\ 0.309 \\ 0.041 \\ 0.072 \\ 0.024 \\ 0.029 \\ 0.003 \\ 0.036 \\ 14.640 \\ -4.438 \end{array}$	$\begin{array}{c} -0.052\\ -0.089\\ -0.012\\ -0.021\\ 0.055\\ 0.212\\ -0.094\\ -0.001\\ -0.010\\ -0.025\\ -0.122\\ 0.017\\ 0.038\\ -0.025\\ 0.038\\ 0.166\\ 0.283\\ 0.037\\ 0.066\\ 0.084\\ 0.247\\ 0.003\\ 0.067\\ 0.895\\ -0.271\end{array}$	0.000 0.0055 0.171 0.084 2.957 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.002 0.000

runl-sensitivity PREDICTED VARIABLE	MEAN	STD DEV	cv	Fair 58	Fi eld 95%
<pre>1 Total P Load kg/yr 2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban Runoff P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Inflow P Conc mg/m3 8 Overflow Rate m/yr 9 Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Residence Time yrs 19 TS Discr Score 20 Prob(Eutrophic) 21 Prob(Mesotrophic) 22 Prob(Oligotrophic)</pre>	356.93 148.53 33.07 111.43 56.40 7.50 26.74 7.10 1.02 0.55 14.64 6.25 13.01 4.23 0.40 2.84 85.27 0.56 0.02 0.01 0.69 0.30	106.01 55.05 11.58 44.98 18.80 1.50 7.24 1.08 0.15 0.14 5.36 3.16 7.25 2.18 0.17 0.00 35.33 0.15 0.01 0.02 0.21 0.23	0.30 0.37 0.35 0.40 0.33 0.20 0.27 0.15 0.15 0.25 0.37 0.51 0.51 0.41 0.28 0.27 1.88 0.31 0.77	197.0770.7716.4149.7028.965.0315.565.240.750.337.042.284.271.510.172.8437.240.320.01-0.020.26-0.16	$\begin{array}{c} 646.47\\ 311.72\\ 66.64\\ 249.80\\ 109.85\\ 11.19\\ 45.95\\ 9.63\\ 1.38\\ 0.90\\ 30.44\\ 17.17\\ 39.67\\ 11.84\\ 0.91\\ 2.84\\ 195.28\\ 0.97\\ 0.04\\ 1.12\\ 0.76\\ \end{array}$
runl-sensitivity REDICTED VARIABLE: 11 P Spring HEAN = 14.637 STD. DEV.	mg/m3 = 5.357	97 CV	= .3660	57	
INPUT VARIABLE	MEAN	cv	DY/DX	DLY/DLX	۶ VAR.
<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 9 Wetland Area km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 29 Urban P mg/m3 31 Wetland P mg/m3 32 Atmos P Load kg/km2-yr 35 Error - Watshd 6 Error - P Reten</pre>	1.47 8.83 1.08 0.73 0.49 0.94 1.88 0.22 7.23 0.85 150.00 15.00 10.00 1.00 1.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.333 0.300 0.550	$\begin{array}{c} -0.220\\ -0.219\\ -0.220\\ -0.220\\ 1.250\\ 4.118\\ -1.094\\ -0.220\\ -0.410\\ 0.429\\ 0.002\\ 6.151\\ 0.051\\ 0.051\\ 0.051\\ 0.038\\ 0.026\\ 0.017\\ 0.033\\ 0.008\\ 0.077\\ 12.016\\ -6.595\end{array}$	$\begin{array}{c} -0.022\\ -0.132\\ -0.016\\ -0.011\\ 0.042\\ 0.264\\ -0.141\\ -0.003\\ -0.203\\ 0.025\\ 0.021\\ 0.021\\ 0.021\\ 0.021\\ 0.053\\ 0.317\\ 0.039\\ 0.026\\ 0.066\\ 0.312\\ 0.008\\ 0.158\\ 0.821\\ -0.451\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.013 0.013 0.013 0.013 0.013 0.021 0.040 3.617 0.002 2.070 45.269 45.833

Introduction of the second s	runl-concitivity				Harvey	2
1 Total P Load kg/yr 213.12 69.13 0.32 111.40 407.72 2 Undeweloped P Load kg/yr 92.74 41.08 0.44 38.24 224.90 3 Agricultural P Load kg/yr 23.26 11.18 0.44 8.42 224.90 3 Agricultural P Load kg/yr 23.26 11.18 0.44 8.40 60 63 5 Atmospheric P Load kg/yr 8.93 1.79 0.20 5.98 13.31 7 Inflow P Conc mg/m3 23.94 6.06 0.25 14.42 39.72 8 Overflow Rate m/yr 5.36 1.62 0.30 1.81 6.00 10 1 - P Retent Coef 0.42 0.14 0.33 0.22 0.80 11 String/m3 9.96 3.98 0.40 4.48 22.13 12 Chlorophyll-a mg/m3 8.56 4.99 0.58 2.66 27.50 14 Secchi Depth m 5.10 0.00 1.01 15.10 12.49 13 Rosidence Time yr 1.37 <td< td=""><td>PREDICTED VARIABLE</td><td>MEAN</td><td>STD DEV</td><td>CV</td><td>5%</td><td>95%</td></td<>	PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
a Agricultural P Load kg/yr 38.40 17.10 0.45 15.76 93.54 4 Urban Runoff P Load kg/yr 23.26 11.18 0.46 6.90 60.81 5 Atmooff P Load kg/yr 8.93 1.79 0.20 5.98 13.31 7 Inflow P Conc mg/m3 23.94 6.06 0.25 14.42 39.72 8 Overflow Rate m/yr 5.36 1.62 0.30 1.81 6.00 10 1 - P Retent Coef 0.42 0.14 0.33 0.22 0.80 11 P Spring mg/m3 9.96 3.98 0.40 4.48 22.13 12 Chlorophyll-a mg/m3 4.35 2.29 0.53 1.52 12.49 13 Max Chi-a mg/m3 8.56 4.99 0.58 2.66 27.50 14 Secchi Depth m 15.10 0.00 0.00 15.10 16.14 0.84 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.84 15 Oxygen Depl Kate g/m2-day 0.35 0.30 0.30 0.63 2.95 16 Mypol Depth m 15.10 0.00 0.00 <t< td=""><td>1 Total P Load kg/yr 2 Undeveloped P Load kg/yr</td><td>213.12</td><td>69.13 41.08</td><td>0.32</td><td>111.40 38.24</td><td>407.72</td></t<>	1 Total P Load kg/yr 2 Undeveloped P Load kg/yr	213.12	69.13 41.08	0.32	111.40 38.24	407.72
4 Upbar Runoff P Load kg/yr 23.26 11.18 0.48 8.90 60.81 5 Atmospheric P Load kg/yr 49.80 16.60 0.33 25.57 97.00 6 Septic P Load kg/yr 8.93 1.79 0.20 5.98 13.31 7 Inflow P Conc mg/m3 23.94 6.06 0.25 14.42 39.72 8 exterlow Rate m/yr 5.36 1.62 0.30 1.81 6.00 10 1 - P Retent Coef 0.42 0.14 0.33 0.22 0.80 11 P Spring mg/m3 4.35 2.29 0.53 1.52 1.24 13 Max Chi-a mg/m3 8.56 4.99 0.53 2.66 27.50 14 secchi Depth m 51.0 0.00 0.01 1.96 14.30 15 Dxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.84 16 By Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 Ts Discr Score 0.02 0.00 2.34 0.01<	3 Agricultural P Load kg/yr	38.40	17.10	0.45	15.76	93.54
5 Atmospheric P Load kg/yr 49.80 16.60 0.33 25.57 97.00 6 Septic P Load kg/yr 8.93 1.79 0.20 5.98 13.31 7 Inflow P Conc mg/m3 23.94 6.06 0.25 14.42 39.72 8 Overflow Rate m/yr 5.36 1.62 0.30 2.93 9.81 9 Oseflow Rate m/yr 3.30 0.99 0.30 1.81 6.00 10 1 - P Retent Coef 0.42 0.43 0.42 0.33 1.22 0.80 11 P Spring mg/m3 9.96 3.90 0.53 2.66 2.750 13 Max Chl-a mg/m3 8.56 4.99 0.53 2.66 2.750 14 Secchi Depth m 5.30 2.63 0.50 1.44 0.84 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.84 16 Hypol Depth m 15.10 0.00 0.00 1.510 1.510 17 Days of 02 Supply 519.7 229.22 0.44 21.77 1255.46 18 P Residence Time yrs 1.37 0.33 0.23 1.25	4 Urban Runoff P Load kg/yr	23,26	11.18	0.48	8,90	60.81
6 Septic P Load kg/yr 8.93 1.79 0.20 5.98 13.31 7 Inflow P Conc mg/m3 23.94 6.06 0.25 14.42 39.72 8 Overflow Rate m/yr 5.36 1.62 0.30 2.93 9.81 9 Residence Time yr 3.30 0.99 0.30 1.81 6.00 10 1 - P Retent Coef 0.42 0.14 0.33 0.22 0.80 11 P Spring mg/m3 9.96 3.98 0.400 4.48 22.13 12 Chlorophyll-a mg/m3 4.35 2.29 0.53 1.52 12.49 13 Max Chl-a mg/m3 8.56 4.99 0.58 2.66 27.50 14 Secchi Depth m 5.30 2.63 0.50 1.96 14.30 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.84 16 Hypol Depth m 15.10 0.00 0.00 15.10 15.10 17 Days of 02 Supply 519.27 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.24 0.01 0.03 10 Prob(Eutrophic) 0.69 0.23 0.75 -0.15 0.77 12 Prob(Mesotrophic) 0.61 0.23 0.75 -0.15 0.77 12 Prob(Mesotrophic) 0.631 0.23 0.75 -0.15 0.77 12 Prob(Mesotrophic) 0.61 0.23 0.75 -0.15 0.77 12 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity FEDICTED VARIABLE: 11 P Spring mg/m3 MEAN = 9.95992 STD. DEV. = 3.97547 CV = .399146 1 NFUT VARIABLE NEAN CV DY/DX DLY/DLX % VAR. 1 Conifer For Area km2 7.14 0.000 -0.053 -0.038 0.000 2 Hardwood For Area km2 1.22 0.000 0.792 0.048 0.000 6 Utban Area km2 1.22 0.000 -0.53 -0.026 0.000 4 Untilled Agric Area km2 1.66 0.000 0.792 0.048 0.000 6 Utban Area km2 1.66 0.000 0.792 0.048 0.000 6 Utban Area km2 1.66 0.000 -0.53 -0.026 0.000 9 Wetland Area km2 1.66 0.000 2.53 -0.026 0.000 14 kac Area km2 1.66 0.000 0.792 0.048 0.000 15 Runoff m/yr 0.43 0.302 -0.278 -0.012 0.000 16 Shoreline Septic Use Cap/yr 178.50 0.000 0.024 0.037 0.042 16 Shoreline Septic Use Cap/yr 178.50 0.000 0.024 0.037 0.042 17 Schadwood For P mg/m3 15.00 0.200 0.044 0.024 24 Conifer For P mg/m3 15.00 0.200 0.044 0.024 25 Hardwood For P mg/m3 15.00 0.200 0.074 0.011 0.012 26 Hixed For P mg/m3 15.00 0.200 0.074 0.011 0.012 26 Hixed For P mg/m3 15.00 0.200 0.074 0.011 0.012 27 Headwood For P mg/m3 15.00 0.200 0.074 0.011 0.012 28 Hile Agric P mg/m3 15.00 0.200 0.074 0.011 0.013 28 Tille Agric P mg/m3 15.00 0.200 0.	5 Atmospheric P Load kg/yr	49.80	16,60	0.33	25.57	97.00
<pre>/ Inflow P Conc mg/m3 22.94 6.06 0.25 14.42 39.12 8 Overflow Rate m/yr 5.36 1.62 0.30 2.93 9.81 9 Residence Time yr 3.30 0.99 0.30 1.81 6.00 10 1 - P Retent Coef 0.42 0.14 0.33 0.22 0.80 11 P Spring mg/m3 9.96 3.98 0.40 4.48 22.13 12 Chlorophyl1-a mg/m3 4.35 2.29 0.53 1.52 12.49 13 Max Chl-a mg/m3 8.56 4.99 0.58 2.66 27.50 14 Secchi Depth m 5.30 2.63 0.50 1.96 14.30 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.34 16 Hypol Depth m 15.10 0.00 0.00 15.10 15.10 17 Days of 02 Supply 519.27 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.24 0.01 0.03 20 Prob(Eutrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob(Oligotrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 TEAN = 9.95992 STD. DEV. = 3.97547 CV = .399146 INFUT VARIABLE H P Spring mg/m3 TEAN = 9.95992 STD. DEV. = 3.97547 CV = .399146 INFUT VARIABLE 11 P Spring mg/m3 TEAN = 9.063 2.0.00 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Untilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 5 Tilled Agric Area km2 1.14 0.000 -0.053 -0.026 0.000 11 Mean Depth m 1.7.70 0.000 0.0024 -0.087 0.000 12 Septic P Pactor (kg/cap-yr) 0.05 0.200 0.024 -0.087 0.000 13 Kade For Area km2 1.144 0.000 -0.053 -0.026 0.000 14 Mutilled Area km2 1.144 0.000 -0.053 -0.026 0.000 15 Runoff m/yr 0.43 0.302 -0.278 -0.012 0.003 16 Shoreline Septic Use cap/yr 178.50 0.000 0.024 -0.087 0.000 21 Septic P Pactor (kg/cap-yr) 0.05 0.200 0.343 0.231 0.55 25 Hardwood For P mg/m3 15.00 0.200 0.024 0.003 26 Hirdwod For P mg/m3 15.00 0.200 0.024 0.033 27 Hole Agric P mg/m3 15.00 0.200 0.024 0.033 28 Tilled Agric P mg/m3 15.00 0.200 0.024 0.033 29 Utban P mg/m3 15.00 0.200 0.074 0.111 0.311 28 Tilled Agric P mg/m3 15.00 0.200 0.074 0.111 0.311 28 Tilled Agric P mg/m3 15.00 0.200 0.074 0.111 0.331 20 Mixed For P mg/m3 15.00 0.200 0.07</pre>	6 Septic P Load kg/yr	8.93	1.79	0.20	5.98	13.31
a Overlidow Rate m/yt 3.30 1.02 0.30 1.81 6.00 10 1 - P Retent Coef 0.42 0.14 0.33 0.22 0.80 11 P Spring mg/m3 9.96 3.98 0.40 4.43 22.13 12 Chlorophyll-a mg/m3 4.35 2.29 0.53 1.52 12.49 13 Max Chi-a mg/m3 8.56 4.99 0.58 2.66 7.50 14 Secchi Depth m 5.30 2.63 0.50 1.96 14.430 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.84 16 Rypol Depth m 15.10 0.00 0.00 15.10 15.10 17 Days of O2 Supply 519.27 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.31 0.03 0.23 0.34 0.23 1.15 runl-sensitivity * Strop (Gutrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity * Strop (Gutrophic)	7 Inflow P Conc mg/m3	23.94	6.06	0.25	14.42	39.72
10 1 P Fing meth Coef 0.42 0.14 0.33 0.22 0.80 11 P Spring meg/m3 9.96 3.98 0.40 4.48 22.13 12 Chlorophyll-a mg/m3 4.35 2.29 0.53 1.52 12.49 13 Max Chl-a mg/m3 8.56 4.99 0.58 2.66 27.50 14 Secchi Depth m 5.30 2.63 0.50 1.96 14.30 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.84 16 Hypol Depth m 15.10 0.00 0.00 15.10 15.46 18 P Residence Time yrs 1.37 0.22 0.44 214.77 1255.46 19 TS Discr Score 0.02 0.00 0.24 0.01 0.03 21 Prob(Mesotrophic) 0.31 0.23 0.75 0.77 22 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 -0.053 -	9 Residence Time vr	3.30	0.99	0.30	1.81	6.00
11 P Spring mg/m3 9.96 3.98 0.40 4.48 22.13 12 Chlorophyll-a mg/m3 4.35 2.29 0.53 1.52 12.49 13 Max Chl-a mg/m3 8.56 4.99 0.58 2.66 27.50 14 Secchi Depth m 5.30 2.63 0.50 1.96 14.30 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.34 16 Hypol Depth m 15.10 0.00 0.00 15.10 15.10 17 Days of 02 Supply 519.72 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.023 0.34 0.23 1.15 runl-sensitivity runl-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 0.033 0.000 1.15 0.000 0.033 0.000 1 Conifer For Area km2 7.14 0.000 -0.053 -0.026 0.000 <	10 1 - P Retent Coef	0.42	0.14	0.33	0.22	0.80
12 Chlorophyll-a mg/m3 4.35 2.29 0.53 1.52 12.49 13 Max Chl-a mg/m3 8.56 4.99 0.58 2.66 27.50 14 Secchi Depth m 5.30 2.63 0.50 1.96 14.30 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.84 16 Hypol Depth m 15.10 0.00 0.00 15.10 15.10 17 Days of 02 Supply 519.27 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.24 0.01 0.03 20 Prob(Eutrophic) 0.01 0.00 2.31 -0.00 0.00 21 Prob(Eutrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob(Oligotrophic) 0.669 0.23 0.34 0.23 1.15 run1-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 TEAN = 9.95992 STD. DEV. = 3.97547 CV = .399146 INPUT VARIABLE NEAN CV DY/DX DLY/DLX & VAR. 1 Conifer For Area km2 7.14 0.000 -0.053 -0.038 0.000 2 Hardwood For Area km2 1.22 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Untilled Agric Area km2 3.67 0.000 -0.53 -0.026 0.000 5 Tilled Agric Area km2 1.40 0.00 -0.53 -0.026 0.000 6 Urban Area km2 1.40 0.00 -0.53 -0.026 0.000 11 Mean Depth m 17.70 0.000 -0.153 -0.026 0.000 15 Karea km2 1.14 0.000 -0.53 -0.026 0.000 16 Marea km2 1.14 0.000 -0.53 -0.026 0.000 17 Lake Area km2 1.14 0.000 -0.53 -0.026 0.000 10 Mixed For Area km2 1.14 0.000 -0.053 -0.026 0.000 11 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 15 Sunoff m/yr 0.43 0.302 -0.278 -0.012 0.003 16 Shoreline Septic Use cap/yr 178.50 0.000 0.022 0.048 0.000 15 Sunoff m/yr 0.43 0.302 -0.278 -0.012 0.008 16 Shoreline Septic Use cap/yr 178.50 0.000 0.022 0.042 0.003 16 Shoreline Septic Use cap/yr 178.50 0.000 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.044 0.216 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.044 0.246 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.044 0.246 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.044 0.246 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.044 0.246 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.044 0.236 1.037 20 Urban P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 28 Wtiand P mg/m3 15.00 0.200 0.0	ll P Spring mg/m3	9.96	3.98	0.40	4.48	22.13
13 Max Chi-A mg/m3 8.56 4.99 0.58 2.66 2/1.30 14 Secchi Depth m 5.30 2.63 0.50 1.96 14.30 15 Oxygen Depl Rate g/m2-day 0.35 0.15 0.44 0.14 0.84 16 Hypol Depth m 15.10 0.00 0.00 15.10 17.51 17 Days of 02 Supply 519.27 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.24 0.01 0.03 20 Prob(Eutrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity ************************************	12 Chlorophyll-a mg/m3	4.35	2.29	0.53	1.52	12.49
15 Ocygen Deptin m 0.35 0.15 0.44 0.14 0.84 16 Hypol Depth m 15.10 0.00 0.00 15.10 15.10 17 Days of 02 Supply 519.27 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.24 0.01 0.03 20 Prob(Eutrophic) 0.31 0.23 0.75 -0.15 0.77 21 Prob(Mesotrophic) 0.31 0.23 0.34 0.23 1.15 runl-sensitivity * * * 0.95992 STD. DEV. = 3.97547 CV = .399146 INPUT VARIABLE: 11 P Spring mg/m3 TEAN = 9.95992 STD. DEV. = 3.97547 CV = .399146 INPUT VARIABLE MEAN CV DY/DX DLY/DLX & VAR. 1 Conifer For Area km2 7.14 0.000 -0.053 -0.026 0.000 2 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 2 Mixed For Area km2 1.26 0.000 <td>13 Max Chi-a mg/m3 14 Secchi Dopth m</td> <td>8.56</td> <td>4.99</td> <td>0.58</td> <td>2.00</td> <td>27.50</td>	13 Max Chi-a mg/m3 14 Secchi Dopth m	8.56	4.99	0.58	2.00	27.50
16 Hypol Depth m 15.10 0.00 15.10 15.10 17 Days of O2 Supply 519.27 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.24 0.01 0.03 20 Prob(Eutrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity * * * 0.69 0.23 0.34 0.23 1.15 runl-sensitivity * * * * 0.00 -0.05 -0.038 0.000 2 Hardwood For Area km2 7.14 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Utilled Agric Area km2 1.66 0.000 -0.753 -0.026 0.000 5 Tilled Agric Area km2 1.66 0.000 -0.524 -0.087 0.000 6 Urban Area km2 1.66 </td <td>15 Oxygen Depl Rate g/m2-day</td> <td>0.35</td> <td>0.15</td> <td>0.44</td> <td>0.14</td> <td>0.84</td>	15 Oxygen Depl Rate g/m2-day	0.35	0.15	0.44	0.14	0.84
17 Days of O2 Supply 519.27 229.22 0.44 214.77 1255.46 18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.21 0.00 0.02 0.01 0.00 0.02 20 Prob(Eutrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity runl-sensitivity reduction 0.00 -0.053 -0.038 0.000 2 Hardwood For Area km2 7.14 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.00 -0.053 -0.026 0.000 4 Unilled Agric Area km2 1.22 0.00 -0.053 -0.026 0.000 5 Tilled Agric Area km2 0.39 0.000 -0.053 -0.026 0.000 4 Unilled Agric Area km2 0.66 0.000 -0.524 -0.027 0.000 6 Urban Area km2 1.44 0.000 -0.524 -0.027 0.000 7 La	16 Hypol Depth m	15.10	0.00	0.00	15.10	15,10
18 P Residence Time yrs 1.37 0.53 0.39 0.63 2.98 19 TS Discr Score 0.02 0.00 0.24 0.01 0.03 20 Prob(Eutrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 0.00 -0.053 -0.038 0.000 2 HeAN 9.95992 STD. DEV. = 3.97547 CV = .399146 VAR. 1 Conifer For Area km2 7.14 0.000 -0.053 -0.038 0.000 2 Hardwood For Area km2 1.22 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.66 0.000 -0.792 0.048 0.000 4 Untilled Agric Area km2 0.660 -0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 1.66 0.000 -0.147 -0.261 0.000 6 Urban Area km2 1.14 0.000 -0.053 -0.020 0.000 7 Lake Area km2 1.66 0.000 -0.278	17 Days of O2 Supply	519.27	229.22	0.44	214.77	1255.46
19 TS DiScr Score 0.02 0.00 0.24 0.01 0.00 21 Prob(Eutrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity REAN = 9.95992 STD. DEV. = 3.97547 CV = .399146 INPUT VARIABLE: 11 P Spring mg/m3 STD. DEV. = 3.97547 CV = .399146 INPUT VARIABLE MEAN CV DY/DX DLY/DLX & VAR. 1 Conifer For Area km2 7.14 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.020 0.000 4 Urbled Agric Area km2 3.67 0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 1.66 0.000 -0.254 -0.067 0.000 7 Lake Area km2 1.66 0.000 -0.254 -0.067 0.000 9 Wetland Area km2 1.66 0.000 -0.263 -0.020 0.000 15 Runoff m/yr 0.43 0.302 -0.278 -0.048 0.000 16 Shoreline Septic Use cap/y	18 P Residence Time yrs	1.37	0.53	0.39	0.63	2.98
21 Prob (Mesotrophic) 0.31 0.23 0.75 -0.15 0.77 22 Prob (Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 0.000 -0.053 -0.038 0.000 1 Conifer For Area km2 7.14 0.000 -0.053 -0.038 0.000 2 Hardwood For Area km2 1.22 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Untilled Agric Area km2 1.22 0.000 -0.053 -0.026 0.000 5 Tilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 6 Urban Area km2 1.66 0.000 -0.523 -0.026 0.000 7 Lake Area km2 1.44 0.000 -0.53 -0.020 0.000 7 Lake Area km2 1.45 0.302 -0.278 -0.012 0.000 1 Mean Depth m 17.70 <	19 TS Discr Score 20 Prob(Eutrophic)		0.00	2 31	-0.01	0.03
22 Prob(Oligotrophic) 0.69 0.23 0.34 0.23 1.15 runl-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 STD. DEV. = 3.97547 CV = .399146 INPUT VARIABLE MEAN CV DY/DX DLY/DLX % VAR. 1 Conifer For Area km2 7.14 0.000 -0.053 -0.038 0.000 2 Hardwood For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Untilled Agric Area km2 0.60 0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 0.60 0.000 -0.524 -0.087 0.000 6 Urban Area km2 1.14 0.000 -0.053 -0.026 0.000 9 Wetland Area km2 1.14 0.000 -0.147 -0.261 0.000 18 Runoff m/yr 0.43 0.322 -0.278 -0.012 0.008 16 Shoreline Septic Use cap/yr 178.50 0.000 0.024 0.002 0.042 0.004 25 Hardwood For P mg/m3 1	21 Prob(Mesotrophic)	0.31	0.23	0.75	-0.15	0.77
runl-sensitivity REDICTED VARIABLE: 11 P Spring mg/m3 REAN = 9.95992 STD. DEV. = 3.97547 CV = .399146 INPUT VARIABLE NEAN CV DY/DX DLY/DLX & VAR. 1 Conifer For Area km2 7.14 0.000 -0.053 -0.038 0.000 2 Hardwood For Area km2 4.87 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Untilled Agric Area km2 3.67 0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 6 Urban Area km2 1.66 0.000 -0.524 -0.087 0.000 7 Lake Area km2 1.66 0.000 -0.524 -0.087 0.000 9 Wetland Area km2 1.14 0.000 -0.53 -0.006 0.000 11 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 15 Shoreline Septic Use cap/yr 178.50 0.000 0.002 0.042 0.000 21 Septic P Factor (kg/cap-yr) 0.05 0.200 8.343 0.042 0.044 24 Conifer For P mg/m3 15.00 0.200 0.144 0.216 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.023 0.034 0.030 32 Atmos P Load kg/km2-yr 30.00 0.333 0.078 0.234 3.808 35 Error - Watshd 1.00 0.550 -5.782 -0.581 63.988	22 Prob(Oligotrophic)	0,69	0.23	0.34	0.23	1.15
INPUT VARIABLE MEAN CV DY/DX DLY/DLX % VAR. 1 Conifer For Area km2 7.14 0.000 -0.053 -0.038 0.000 2 Hardwood For Area km2 4.87 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Untilled Agric Area km2 3.67 0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 6 Urban Area km2 0.60 0.000 -0.524 -0.087 0.000 9 Wetland Area km2 1.14 0.000 -0.053 -0.012 0.008 10 Runoff m/yr 0.43 0.302 -0.278 -0.012 0.008 16 Shoreline Septic Use cap/yr 178.50 0.000 0.002 0.042 0.000 21 Septic P Factor (kg/cap-yr) 0.05 0.200 0.144 0.216 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200	runl-sensitivity REDICTED VARIABLE: 11 P Spring TEAN = 9.95992 STD. DEV	mg/m3 = 3,975	47 CV		46	
1 Conifer For Area km2 7.14 0.000 -0.053 -0.038 0.000 2 Hardwood For Area km2 4.87 0.000 -0.053 -0.026 0.000 3 Mixed For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Untilled Agric Area km2 3.67 0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 6 Urban Area km2 0.39 0.000 2.441 0.095 0.000 7 Lake Area km2 1.66 0.000 -0.524 -0.087 0.000 9 Wetland Area km2 1.44 0.000 -0.147 -0.261 0.000 11 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 12 Septic P Factor (kg/cap-yr) 0.05 0.200 8.343 0.042 0.004 21 Septic P Factor (kg/cap-yr) 0.05 0.200 8.343 0.042 0.044 24 Conifer For P mg/m3 15.00 0.200 0.024 0.037 0.034 25 Hardwood For P mg/m3 15.00 0.200	INPUT VARIABLE	MEAN	CV	DY/DX	DLY/DLX	% VAR.
1 Confrer For Area km2 7.14 0.000 -0.053 -0.056 0.000 2 Hardwood For Area km2 1.22 0.000 -0.053 -0.026 0.000 4 Untilled Agric Area km2 1.22 0.000 -0.053 -0.020 0.000 4 Untilled Agric Area km2 3.67 0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 6 Urban Area km2 0.39 0.000 2.441 0.095 0.000 7 Lake Area km2 1.66 0.000 -0.524 -0.087 0.000 9 Wetland Area km2 1.14 0.000 -0.053 -0.006 0.000 11 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 12 Septic P Factor (kg/cap-yr) 0.05 0.200 0.042 0.000 2 Septic P Factor (kg/cap-yr) 0.05 0.200 0.144 0.216 1.175 2 Hardwood For P mg/m3 15.00 0.200 0.042 0.0042 0.0044 24 Conifer For P mg/m3 15.00 0.200 0.074 </td <td>1 Conifor Por Area km2</td> <td>7 7 4</td> <td>0 000</td> <td>-0.053</td> <td>-0.039</td> <td>0 000</td>	1 Conifor Por Area km2	7 7 4	0 000	-0.053	-0.039	0 000
3 Mixed For Area km2 1.22 0.000 -0.053 -0.006 0.000 4 Untilled Agric Area km2 3.67 0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 6 Urban Area km2 0.39 0.000 2.441 0.095 0.000 9 Wetland Area km2 1.66 0.000 -0.524 -0.087 0.000 9 Wetland Area km2 1.14 0.000 -0.147 -0.261 0.000 10 Mean Depth m 17.70 0.000 -0.042 0.000 0.002 11 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 12 Septic P Factor (kg/cap-yr) 0.05 0.200 8.343 0.042 0.044 14 Conifer For P mg/m3 15.00 0.200 0.144 0.216 1.175 12 Hardwood For P mg/m3 15.00 0.200 0.024 0.037 0.034 12 Withled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 13 Wetland P mg/m3 139.00 0.223 0.008	2 Hardwood For Area km2	4.87	0.000	-0.053	-0.026	0.000
4 Untilled Agric Area km2 3.67 0.000 -0.053 -0.020 0.000 5 Tilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 6 Urban Area km2 0.39 0.000 2.441 0.095 0.000 7 Lake Area km2 1.66 0.000 -0.524 -0.087 0.000 9 Wetland Area km2 1.14 0.000 -0.053 -0.012 0.001 10 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 15 Runoff m/yr 0.43 0.302 -0.278 -0.012 0.008 16 Shoreline Septic Use cap/yr 178.50 0.000 0.002 0.042 0.000 21 Septic P Factor (kg/cap-yr) 0.05 0.200 8.343 0.042 0.044 24 Conifer For P mg/m3 15.00 0.200 0.144 0.216 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.044 0.037 0.344 27 Untilled Agric P mg/m3 15.00 0.200 0.074 0.111 0.311 28 Tilled Agric P mg/m3 139.00 0.223	3 Mixed For Area km2	1.22	0.000	-0.053	-0.006	0.000
5 Tilled Agric Area km2 0.60 0.000 0.792 0.048 0.000 6 Urban Area km2 0.39 0.000 2.441 0.095 0.000 7 Lake Area km2 1.66 0.000 -0.524 -0.087 0.000 9 Wetland Area km2 1.14 0.000 -0.053 -0.006 0.000 11 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 15 Runoff m/yr 0.43 0.302 -0.278 -0.012 0.008 16 Shoreline Septic Use cap/yr 178.50 0.000 0.002 0.042 0.000 21 Septic P Factor (kg/cap-yr) 0.05 0.200 8.343 0.042 0.044 24 Conifer For P mg/m3 15.00 0.200 0.144 0.216 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.024 0.037 0.034 29 Urban P mg/m3 139.00 0.223 0.008 0.109 0.372 31 Wetland P mg/m3 139.00 0.233 0.034 </td <td>4 Untilled Agric Area km2</td> <td>3.67</td> <td>0.000</td> <td>-0.053</td> <td>-0.020</td> <td>0.000</td>	4 Untilled Agric Area km2	3.67	0.000	-0.053	-0.020	0.000
6 0rban Area km2 0.39 0.000 2.441 0.093 0.000 7 Lake Area km2 1.66 0.000 -0.524 -0.087 0.000 9 Wetland Area km2 1.14 0.000 -0.053 -0.006 0.000 11 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 15 Runoff m/yr 0.43 0.302 -0.278 -0.012 0.008 16 Shoreline Septic Use cap/yr 178.50 0.000 0.002 0.042 0.000 21 Septic P Factor (kg/cap-yr) 0.05 0.200 8.343 0.042 0.044 24 Conifer For P mg/m3 15.00 0.200 0.024 0.037 0.034 25 Hardwood For P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.074 0.111 0.311 28 Tilled Agric P mg/m3 139.00 0.223 0.008 0.109 0.372 31 Wetland P mg/m3 139.00 0.223 0.034 0.030 32 Atmos P Load kg/km2-yr 30.00 0.333 0.078 <	5 Tilled Agric Area km2	0,60	0.000	0.792	0.048	0.000
9 Wetland Area h100 0.000 -0.053 -0.006 0.000 11 Mean Depth m 17.70 0.000 -0.147 -0.261 0.000 15 Runoff m/yr 0.43 0.302 -0.278 -0.012 0.008 16 Shoreline Septic Use cap/yr 178.50 0.000 0.002 0.042 0.000 21 Septic P Factor (kg/cap-yr) 0.05 0.200 8.343 0.042 0.044 24 Conifer For P mg/m3 15.00 0.200 0.144 0.216 1.175 25 Hardwood For P mg/m3 15.00 0.200 0.098 0.147 0.546 26 Mixed For P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.074 0.111 0.311 28 Tilled Agric P mg/m3 15.00 0.200 0.023 0.034 0.030 29 Urban P mg/m3 15.00 0.200 0.023 0.034 0.030 32	o Urban Area Km2 7 Lako Aroa km2	0.59	0.000	-0.524	-0.087	0.000
11Mean Depth m17.700.000-0.147-0.2610.00015Runoff m/yr0.430.302-0.278-0.0120.00816Shoreline Septic Use cap/yr178.500.0000.0020.0420.00021Septic P Factor (kg/cap-yr)0.050.2008.3430.0420.04424Conifer For P mg/m315.000.2000.1440.2161.17525Hardwood For P mg/m315.000.2000.0240.0370.03426Mixed For P mg/m315.000.2000.0740.1110.31128Tilled Agric P mg/m315.000.2000.0740.1110.31128Tilled Agric P mg/m3139.000.2230.0080.1090.37231Wetland P mg/m315.000.2000.0230.0340.03032Atmos P Load kg/km2-yr30.000.3330.0780.2343.80835Error - Watshd1.000.3007.2150.72429.64841.000.550-5.782-0.58163.988	9 Wetland Area km2	1.14	0.000	-0.053	-0.006	0.000
15 Runoff m/yr0.430.302-0.278-0.0120.00816 Shoreline Septic Use cap/yr178.500.0000.0020.0420.00021 Septic P Factor (kg/cap-yr)0.050.2008.3430.0420.04424 Conifer For P mg/m315.000.2000.1440.2161.17525 Hardwood For P mg/m315.000.2000.0240.0370.54626 Mixed For P mg/m315.000.2000.0240.0370.03427 Untilled Agric P mg/m315.000.2000.0740.1110.31128 Tilled Agric P mg/m3139.000.2230.0080.1090.37231 Wetland P mg/m315.000.2000.0230.0340.03032 Atmos P Load kg/km2-yr30.000.3330.0780.2343.80835 Error - Watshd1.000.3007.2150.72429.6486 Error - P Reten1.000.550-5.782-0.58163.988	ll Mean Depth m	17.70	0.000	-0.147	-0.261	0.000
16Shoreline Septic Use Cap/yr178.300.0000.0020.0020.00221Septic P Factor (kg/cap-yr)0.050.2008.3430.0420.04424Conifer For P mg/m315.000.2000.1440.2161.17525Hardwood For P mg/m315.000.2000.0980.1470.54626Mixed For P mg/m315.000.2000.0240.0370.03427Untilled Agric P mg/m315.000.2000.0740.1110.31128Tilled Agric P mg/m3139.000.2230.0080.1090.37231Wetland P mg/m315.000.2000.0230.0340.03032Atmos P Load kg/km2-yr30.000.3330.0780.2343.80835Error - Watshd1.000.3007.2150.72429.6486Error - P Reten1.000.550-5.782-0.58163.988	15 Runoff m/yr	0.43	0.302	-0.278	-0.012	0.008
24Conifer For P mg/m315.000.2000.1440.2161.17525Hardwood For P mg/m315.000.2000.0980.1470.54626Mixed For P mg/m315.000.2000.0240.0370.03427Untilled Agric P mg/m315.000.2000.0740.1110.31128Tilled Agric P mg/m357.000.1110.0120.0690.03629Urban P mg/m3139.000.2230.0080.1090.37231Wetland P mg/m315.000.2000.0230.0340.03032Atmos P Load kg/km2-yr30.000.3330.0780.2343.80835Error - Watshd1.000.3007.2150.72429.6486Error - P Reten1.000.550-5.782-0.58163.988	21 Sentic P Factor (kg/cap-vr)	1/8.50	0.200	8.343	0.042	0.044
25 Hardwood For P mg/m3 15.00 0.200 0.098 0.147 0.546 26 Mixed For P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.074 0.111 0.311 28 Tilled Agric P mg/m3 57.00 0.111 0.012 0.069 0.036 29 Urban P mg/m3 139.00 0.223 0.008 0.109 0.372 31 Wetland P mg/m3 15.00 0.200 0.023 0.034 0.030 32 Atmos P Load kg/km2-yr 30.00 0.333 0.078 0.234 3.808 35 Error - Watshd 1.00 0.300 7.215 0.724 29.648 6 Error - P Reten 1.00 0.550 -5.782 -0.581 63.988	24 Conifer For P mg/m3	15.00	0,200	0.144	0.216	1.175
26 Mixed For P mg/m3 15.00 0.200 0.024 0.037 0.034 27 Untilled Agric P mg/m3 15.00 0.200 0.074 0.111 0.311 28 Tilled Agric P mg/m3 57.00 0.111 0.012 0.069 0.036 29 Urban P mg/m3 139.00 0.223 0.008 0.109 0.372 31 Wetland P mg/m3 15.00 0.200 0.023 0.034 0.030 32 Atmos P Load kg/km2-yr 30.00 0.333 0.078 0.234 3.808 35 Error - Watshd 1.00 0.300 7.215 0.724 29.648 6 Error - P Reten 1.00 0.550 -5.782 -0.581 63.988	25 Hardwood For P mg/m3	15.00	0.200	0.098	0.147	0.546
27 Untilled Agric P mg/m3 15.00 0.200 0.074 0.111 0.311 28 Tilled Agric P mg/m3 57.00 0.111 0.012 0.069 0.036 29 Urban P mg/m3 139.00 0.223 0.008 0.109 0.372 31 Wetland P mg/m3 15.00 0.200 0.023 0.034 0.030 32 Atmos P Load kg/km2-yr 30.00 0.333 0.078 0.234 3.808 35 Error - Watshd 1.00 0.300 7.215 0.724 29.648 6 Error - P Reten 1.00 0.550 -5.782 -0.581 63.988	26 Mixed For P mg/m3	15.00	0.200	0.024	0.037	0.034
29 Urban P mg/m3 139.00 0.223 0.008 0.109 0.372 31 Wetland P mg/m3 15.00 0.200 0.023 0.034 0.030 32 Atmos P Load kg/km2-yr 30.00 0.333 0.078 0.234 3.808 35 Error - Watshd 1.00 0.300 7.215 0.724 29.648 6 Error - P Reten 1.00 0.550 -5.782 -0.581 63.988	2/ UNTILLED AGTIC P MG/M3 28 Tilled Agric P mg/m3	13.00 57 00	0.400	0.0/4	0.069	0.311
31 Wetland P mg/m3 15.00 0.200 0.023 0.034 0.030 32 Atmos P Load kg/km2-yr 30.00 0.333 0.078 0.234 3.808 35 Error - Watshd 1.00 0.300 7.215 0.724 29.648 6 Error - P Reten 1.00 0.550 -5.782 -0.581 63.988	29 Urban P mg/m3	139.00	0.223	0.008	0.109	0,372
32 Atmos P Load kg/km2-yr 30.00 0.333 0.078 0.234 3.808 35 Error - Watshd 1.00 0.300 7.215 0.724 29.648 6 Error - P Reten 1.00 0.550 -5.782 -0.581 63.988	31 Wetland P mg/m3	15.00	0.200	0.023	0.034	0.030
55 Error - Watshd $1.00 0.300 7.215 0.724 29.648$ $6 Error - P Reten $ $1.00 0.550 -5.782 -0.581 63.988$	32 Atmos P Load kg/km2-yr	30.00	0.333	0.078	0.234	3.808
	55 Error - P Reten	1.00	0.550	-5.782	-0.581	63.988

. .

.

.....

runl-sensitivity				Horto	ia
PREDICTED VARIABLE	MEAN	STD DEV	cv	5%	95%
2 Undeveloped P Load kg/yr	195.80	63.19	0.32	$ \begin{array}{r} 102.68 \\ 20.19 \\ 7.13 \\ 24.60 \\ 28.03 \\ 4.22 \end{array} $	373.36
2 Undeveloped P Load kg/yr	53.39	25.96	0.49		141.20
3 Agricultural P Load kg/yr	17.22	7.59	0.44		41.57
4 Urban Runoff P Load kg/yr	64.29	30.88	0.48		168.01
5 Atmospheric P Load kg/yr	54.60	18.20	0.33		106.35
6 Septic P Load kg/yr	6.30	1.26	0.20		9.40
7 Inflow P Conc mg/m3	25.43	6.71	0.26	15.00	43.10
8 Overflow Rate m/yr	4.23	1.28	0.30	2.31	7.73
9 Residence Time yr	1.32	0.39	0.30	0.73	2.40
10 1 - P Retent Coef	0.52	0.14	0.27	0.30	0.89
ll P Spring mg/m3	13.18	4.78	0.36	6.38	27.20
l2 Chlorophyll-a mg/m3	5.66	2.85	0.50	2.07	15.48
l3 Max Chl-a mg/m3	11.60	6.44	0.55	3.83	35.18
l4 Secchi Depth m	4.51	2.29	0.51	1.64	12.43
15 Oxygen Depl Rate g/m2-day	0.43	0.18	0.41	$0.19 \\ 3.63 \\ 44.14 \\ 0.34$	0.99
16 Hypol Depth m	3.63	0.00	0.00		3.63
17 Days of O2 Supply	100.62	41.45	0.41		229.35
18 P Residence Time yrs	0.68	0.24	0.35		1.39
19 TS Discr Score	0.02	0.00	0.25	0.01	0.03
20 Prob(Eutrophic)	0.00	0.00	2.01	-0.01	0.01
21 Prob(Mesotrophic)	0.51	0.26	0.50	-0.00	1.03
22 Prob(Oligotrophic)	0.48	0.26	0.54	-0.04	1.01
runl-sensitivity					
PREDICTED VARIABLE: 11 P Spring EAN = 13.1773 STD. DEV.	mg/m3 = 4.775	38 CV	r = .3623	93	
INPUT VARIABLE	MEAN	cv	DY/DX	DLY/DLX	% VAR.
<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 8 Upstr Lake Area km2 9 Wetland Area km2 10 Upstr Lake Ret Fac km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 20 Inflow Conc of Upst Lakes (mg 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3</pre>	$ \begin{array}{r} 1.61\\ 7.73\\ 2.48\\ 1.36\\ 0.34\\ 1.07\\ 1.82\\ 0.59\\ 0.86\\ 5.01\\ 5.59\\ 0.43\\ 126.00\\ 15.00\\ 0.05\\ 15.00\\ 0.05\\ 15.00\\ 0.05\\ 15.00\\ 0.05\\ 15.00\\ 0.05\\ 15.00\\ 0.05\\ 15.00\\ 0.05\\ 0$	0.000 0.200 0.200 0.200 0.200	$\begin{array}{c} -0.142 \\ -0.142 \\ -0.142 \\ -0.143 \\ 1.076 \\ 3.454 \\ -0.125 \\ -0.143 \\ -0.143 \\ -0.435 \\ -0.508 \\ -2.840 \\ 0.003 \\ -0.145 \\ 8.480 \\ 0.047 \\ 0.047 \end{array}$	$\begin{array}{c} -0.017 \\ -0.083 \\ -0.027 \\ -0.015 \\ 0.028 \\ 0.281 \\ -0.017 \\ -0.006 \\ -0.009 \\ -0.166 \\ -0.216 \\ -0.216 \\ -0.093 \\ 0.032 \\ -0.166 \\ 0.032 \\ 0.053 \\ 0.053 \end{array}$	0.000 0
25 Hardwood For P mg/m3	$ \begin{array}{r} 15.00 \\ 15.00 \\ 57.00 \\ 139.00 \\ 15.00 \\ 15.00 \\ 15.00 \\ 30.00 \\ \end{array} $	0.200	0.224	0.255	1.985
26 Mixed For P mg/m3		0.200	0.072	0.082	0.205
27 Untilled Agric P mg/m3		0.111	0.039	0.045	0.061
28 Tilled Agric P mg/m3		0.223	0.010	0.043	0.017
29 Urban P mg/m3		0.200	0.031	0.328	4.084
30 Upstream Lake P mg/m3		0.200	0.017	0.020	0.012
1 Wetland P mg/m3		0.200	0.025	0.028	0.024
2 Atmos P Load kg/km2-yr		0.333	0.122	0.279	6.579
35 Error - Watshd	1.00	0.300	9.079	0.689	32.529
36 Error - P Reten		0.550	-6.318	-0.479	52.955

	runl-sensitivity			· •	Troque	20
	PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
<u> </u>	Total P Load kg/yr	119.84	46.03	0.38	55.59	258.35
	2 Undeveloped P Load kg/yr	22.38	11.20	0.50	8.23	60.87
	3 Agricultural P Load kg/yr	25.94	12.83	0.49	9.65	69.74
	4 Urban Runoff P Load kg/yr	42.87	22.82	0.53	14.78	124.28
	5 Atmospheric P Load kg/yr	24.90	8.30	0.33	12.78	48.50
	6 Septic P Load kg/yr	3.75	0.75	0.20	2.51	5.59
	8 Overflow Pite m/vr	3 20	1 40	0.27	22.00	7 87
	9 Residence Time vr	1.57	0.59	0.38	0.74	3.32
	10 1 - P Retent Coef	0.50	0.14	0.29	0.28	0.89
	ll P Spring mg/m3	19.54	7.30	0.37	9.26	41.26
	12 Chlorophyll-a mg/m3	8.20	4.18	0.51	2.96	22.75
	13 Max Chl-a mg/m3	17.82	10.04	0.56	5.78	54.97
	14 Secchi Depth m	3.51	1.88	0.54	1.20	10.24
	16 Hypol Depth m	2,30	0.00	0.42	2.30	2.30
	17 Davs of 02 Supply	69.63	29.28	0.42	30.02	161.47
	18 P Residence Time yrs	0.78	0.31	0.40	0.35	1.74
	19 TS Discr Score	0.03	0.01	0.26	0.02	0.05
	20 Prob(Eutrophic)	0.03	0.04	1.54	-0.06	0.12
	21 Prob(Mesotrophic)	0.81	0.10	0.12	0.61	1.00
	runl-sensitivity	0.17	U.T.	0.00	-0.12	0,40
	REDICTED VARIABLE: II P Spring EAN = 19.5437 STD. DEV.	mg/m3 = 7.3012	l cv	3735	83	
	INPUT VARIABLE	MEAN	CV	DY/DX	DLY/DLX	% VAR.
	l Conifer For Area km2	0.69	0.000	-0.857	-0.030	0.000
	2 Hardwood For Area km2	2.62	0.000	-0.856	-0.115	0.000
	3 Mixed For Area km2	0.50	0.000	-0.857	-0.022	0.000
	4 Untilled Agric Area km2	2.06	0.000	-0.856	-0.090	0.000
	5 Tilled Agric Area Km2	0.78	0.000	1.491	0.060	0.000
	o Uidan Afea Km2 7 Laka Area km2	0.90-	0.000	-2.094	-0.089	0.000
	9 Wetland Area km2	0.54	0.000	-0.858	-0.024	0.000
	11 Mean Depth m	5.78	0.000	-0.759	-0.224	0.000
	15 Runoff m/yr	0.34	0.379	-0.738	-0.013	0.017
	16 Shoreline Septic Use cap/yr	75.00	0.000	0.008	0.031	0.000
	21 Septic P Factor (kg/cap-yr)	0.05	0.200	12.230	0.031	0.028
	24 Confier For P mg/m3	15.00	0.200	0.147	0.113	0.364
	25 Mardwood FOL F mg/m3 26 Mixed For P mg/m3	15.00	0.200	0.028	0.021	0.013
	27 Untilled Agric P mg/m3	15.00	0.200	0.115	0.088	0.224
	28 Tilled Agric P mg/m3	57.00	0.111	0.044	0.128	0.144
	29 Urban P mg/m3	139.00	0.223	0.050	0.358	4.560
	31 Wetland P mg/m3	15.00	0.200 0.222	0.030	0.023	2 A27
	35 Error - Watehd	1.00	0.300	14.871	0.761	37.339
	$\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^$	1.00	0.550	-9.740	-0.498	53.835

MEAN	STD DEV	CV	5% M	lorey ₉₅₈
240.12106.9516.9132.1765.4018.6926.094.221.970.4712.355.3310.824.690.392.0062.020.930.020.000.460.54	71.16 47.48 7.48 15.26 21.80 3.74 6.50 1.23 0.57 0.14 4.55 2.70 6.05 2.36 0.16 0.00 25.87 0.34 0.00 0.24 0.24	0.30 0.44 0.44 0.47 0.33 0.20 0.29 0.29 0.29 0.29 0.29 0.30 0.51 0.56 0.50 0.42 0.00 0.42 0.36 0.23 1.92 0.52 0.45	132.75 44.01 6.98 12.46 33.58 12.53 15.85 2.35 1.10 0.26 5.91 1.93 3.53 1.71 0.17 2.00 26.93 0.45 0.01 -0.00 -0.02 0.05	$\begin{array}{r} 434.34\\ 259.87\\ 40.97\\ 83.08\\ 127.38\\ 27.88\\ 42.93\\ 7.57\\ 3.51\\ 0.86\\ 25.82\\ 14.69\\ 33.11\\ 12.85\\ 0.89\\ 2.00\\ 142.82\\ 1.92\\ 0.03\\ 0.01\\ 0.94\\ 1.02 \end{array}$
g mg/m3 SV. = 4.553	14 CV	7 = .3685	26	
MEAN	CV	DY/DX	DLY/DLX	% VAR.
3.44 11.23 1.26 1.76 0.20 0.52 2.18 0.09 8.30 0.45 373.82 0.05 15.00 10.00 10.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.292 0.000 0.200 0	-0.112 -0.112 -0.112 -0.112 -0.112 -0.251 -0.251 -0.113 -0.351 -3.104 0.003 19.236 0.079 0.257 0.029 0.040 0.005 0.012 0.002 0.112 8.023	$\begin{array}{c} -0.031 \\ -0.102 \\ -0.011 \\ -0.016 \\ 0.014 \\ 0.115 \\ -0.044 \\ -0.001 \\ -0.236 \\ -0.112 \\ 0.078 \\ 0.078 \\ 0.078 \\ 0.078 \\ 0.096 \\ 0.312 \\ 0.035 \\ 0.049 \\ 0.022 \\ 0.134 \\ 0.002 \\ 0.272 \\ 0.650 \\ 0.554 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.785\\ 0.000\\ 0.785\\ 0.000\\ 0.178\\ 0.270\\ 2.872\\ 0.036\\ 0.270\\ 2.872\\ 0.036\\ 0.070\\ 0.004\\ 0.657\\ 0.000\\ 6.069\\ 27.981\\ 61\\ 0.77\\ 0.077\\ 0.001\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.069\\ 0.077\\ 0.000\\ 0.000\\ 0.069\\ 0.000$
	MEAN 240.12 106.95 16.91 32.17 65.40 18.69 26.09 4.22 1.97 0.47 12.35 5.33 10.82 4.69 0.39 2.00 62.02 0.93 0.02 0.00 0.46 0.54 9 MEAN 3.44 11.23 1.26 1.76 0.20 0.52 2.18 0.09 8.30 0.45 373.82 0.05 15.00	MEAN STD DEV 240.12 71.16 106.95 47.48 16.91 7.48 32.17 15.26 65.40 21.80 18.69 3.74 26.09 6.50 4.22 1.23 1.97 0.57 0.47 0.14 12.35 4.55 5.33 2.70 10.82 6.05 4.69 2.36 0.39 0.16 2.00 0.00 2.00 0.00 62.02 25.87 0.93 0.34 0.02 0.00 62.02 25.87 0.34 0.24 0.02 0.00 0.00 0.00 0.24 0.54 0.24 0.24 0.54 0.24 0.54 0.24 0.20 0.000 1.26 0.000 1.26 0.000 0.000 0.52 0.000 0.52 0.000 1.26 0.000 0.200 0.50 2.200 0.54 2.292	MEANSTDDEVCV 240.12 71.16 0.30 106.95 47.48 0.44 16.91 7.48 0.44 32.17 15.26 0.47 65.40 21.80 0.33 18.69 3.74 0.20 26.09 6.50 0.25 4.22 1.23 0.29 1.97 0.57 0.29 0.47 0.14 0.30 12.35 4.55 0.37 5.33 2.70 0.51 10.82 6.05 0.56 4.69 2.36 0.50 0.39 0.16 0.42 2.00 0.00 0.00 62.02 25.87 0.42 0.93 0.34 0.36 0.02 0.00 0.23 0.00 0.00 1.92 0.46 0.24 0.45 0.54 0.24 0.45 0.54 0.24 0.45 0.52 0.000 -0.112 1.26 0.000 -0.112 1.26 0.000 -0.112 1.26 0.000 -0.251 0.09 0.000 -0.351 0.45 0.292 -3.104 373.82 0.000 0.023 0.05 0.200 0.200 15.00 0.200 0.223 0.111 0.005 139.00 0.223 0.012 15.00 0.200 0.223 0.111 0.005 13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

runl-sensitivity				Par	ker
PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
Total P Load kg/yr 2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban Runoff P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Inflow P Conc mg/m3 8 Overflow Rate m/yr 9 Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Residence Time yrs 19 TS Discr Score 20 Prob(Eutrophic) 21 Prob(Mesotrophic)	362.16 100.88 179.25 45.14 29.10 7.80 25.21 14.81 0.51 0.62 15.68 6.67 14.02 4.05 0.45 3.05 81.57 0.32 0.03 0.03 0.80 0.17	119.27 38.30 66.66 19.02 9.70 1.56 7.06 2.88 0.10 0.13 5.46 3.29 7.62 2.08 0.18 0.00 32.60 0.08 0.01 0.05 0.11 0.16	0.33 0.38 0.37 0.42 0.33 0.20 0.28 0.19 0.19 0.21 0.35 0.49 0.51 0.40 0.51 0.40 0.26 0.28 1.70 0.14 0.93	187.44 47.21 85.20 19.43 14.94 5.23 14.41 10.04 0.35 0.41 7.82 2.48 4.73 1.45 0.20 3.05 36.67 0.19 0.02 -0.06 0.57 -0.15	699.75 215.56 377.11 104.84 56.68 11.64 44.13 21.85 0.76 0.95 31.45 17.90 41.59 11.33 1.00 3.05 181.40 0.54 0.05 0.12 1.03 0.49
runl-sensitivity					
PREDICTED VARIABLE: 11 P Spring AN = 15.6829 STD. DEV	mg/m3 . ≠ 5.455	52 CV	= .3478	65	
INPUT VARIABLE	MEAN	CV	DY/DX	DLY/DLX	<pre>% VAR.</pre>
<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 8 Upstr Lake Area km2 9 Wetland Area km2 10 Upstr Lake Ret Fac km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 20 Inflow Conc of Upst Lakes (mg 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 30 Upstream Lake P mg/m3 31 Upstream Lake P mg/m3 32 Atmos P Load kg/km2-yr 35 Error - Watshd 36 Error - P Reten</pre>	5.04 3.80 1.11 6.80 2.91 0.49 0.97 0.05 0.32 0.26 7.61 0.67 156.00 15.00 10.00 1.00 1.00	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.550	$\begin{array}{c} -0.171 \\ -0.171 \\ -0.172 \\ -0.171 \\ 1.043 \\ 3.417 \\ -2.046 \\ -0.169 \\ -0.172 \\ -0.434 \\ -0.349 \\ 1.598 \\ 0.002 \\ -0.007 \\ 6.754 \\ 0.146 \\ 0.110 \\ 0.032 \\ 0.197 \\ 0.084 \\ 0.014 \\ 0.001 \\ 0.009 \\ 0.042 \\ 14.085 \\ -5.906 \end{array}$	$\begin{array}{c} -0.055\\ -0.041\\ -0.012\\ -0.074\\ 0.194\\ 0.106\\ -0.127\\ -0.001\\ -0.003\\ -0.007\\ -0.169\\ 0.068\\ 0.022\\ -0.007\\ 0.022\\ 0.139\\ 0.105\\ 0.031\\ 0.125\\ 0.001\\ 0.125\\ 0.001\\ 0.009\\ 0.080\\ 0.898\\ -0.377\end{array}$	0.000 0.002 0.031 1.172 0.949 0.638 0.000 0.003 0.593 59.990 35.453

MEAN	STD DEV	CV	5%	95%
				200
$\begin{array}{r} 435.46\\ 144.81\\ 62.23\\ 84.20\\ 103.50\\ 40.72\\ 28.95\\ 4.36\\ 2.46\\ 0.45\\ 12.99\\ 5.58\\ 11.42\\ 4.55\\ 0.47\\ 5.42\\ 138.44\\ 1.10\\ 0.02\\ 0.00\\ 0.53\\ 0.47\end{array}$	124.5861.5025.6138.3734.508.147.021.140.630.144.912.866.472.320.200.0058.780.400.000.000.240.24	0.29 0.42 0.41 0.46 0.33 0.20 0.24 0.26 0.26 0.31 0.57 0.51 0.42 0.00 0.42 0.36 0.23 1.82 0.44 0.51	245.73 61.93 27.32 33.84 53.14 27.30 17.83 2.59 1.47 0.24 6.10 2.00 3.68 1.64 0.20 5.42 59.21 0.54 0.01 -0.01 0.06 -0.01	771.69 338.58 141.74 209.48 201.59 60.75 47.01 7.34 4.12 0.83 27.66 15.58 35.48 12.62 1.10 5.42 323.64 2.26 0.03 0.01 1.00 0.95
mg/m3 = 4.908	6 CV	= .3780	09	
MEAN	CV	DY/DX	DLY/DLX	% VAR.
3.38 13.72 2.88 3.62 1.24 1.21 3.45 0.09 0.58 1.28 10.72 0.50 814.42 15.00 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.201 0.200 0	$\begin{array}{c} -0.101 \\ -0.100 \\ -0.101 \\ 0.524 \\ 1.743 \\ -0.360 \\ -0.100 \\ -0.100 \\ -0.223 \\ -0.299 \\ -2.128 \\ 0.001 \\ -0.019 \\ 24.286 \\ 0.050 \\ 0.204 \\ 0.043 \\ 0.054 \\ 0.018 \\ 0.001 \\ 0.009 \\ 0.103 \\ 8.685 \\ 0.101 \\ 0.009 \\ 0.103 \\ 0.009 \\ 0.009 \\ 0.103 \\ 0.009 \\ 0.00$	$\begin{array}{c} -0.026\\ -0.106\\ -0.022\\ -0.028\\ 0.050\\ 0.163\\ -0.096\\ -0.001\\ -0.005\\ -0.022\\ -0.247\\ -0.082\\ 0.094\\ -0.022\\ 0.094\\ -0.022\\ 0.094\\ 0.058\\ 0.236\\ 0.049\\ 0.062\\ 0.081\\ 0.193\\ 0.001\\ 0.238\\ 0.669\\ -0.548\end{array}$	0.000 0.0056 1.302 0.000 0.003 4.393 28.174
	435.46 144.81 62.23 84.20 103.50 40.72 28.95 4.36 2.46 0.45 12.99 5.58 11.42 4.55 0.47 5.42 138.44 1.10 0.02 0.00 0.53 0.47 mg/m3 = 4.908 MEAN 3.38 13.72 2.88 3.62 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.24 1.21 3.45 0.09 0.58 1.28 1.24 1.21 3.45 0.09 0.58 1.28 1.20 1.00 1.00 1.00 1.00	435.46 124.58 144.81 61.50 62.23 25.61 84.20 38.37 103.50 34.50 40.72 8.14 28.95 7.02 4.36 1.14 2.46 0.63 0.45 0.14 12.99 4.91 5.58 2.86 11.42 6.47 4.55 2.32 0.47 0.20 5.42 0.00 0.47 0.20 5.42 0.00 138.44 58.78 1.10 0.40 0.02 0.00 0.47 0.24 mg/m3 $= 4.9086$ CV MEAN CV 3.38 0.000 1.24 0.000 1.24 0.000 1.24 0.000 1.24 0.000 1.24 0.000 1.24 0.000 0.47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

runl-sensitivity PREDICTED VARIABLE	MEAN	STD DEV	CV	Shelbu 5%	r ne 95%
Total P Load kg/yr 2 Undeveloped P Load kg/yr 3 Agricultural P Load kg/yr 4 Urban Runoff P Load kg/yr 5 Atmospheric P Load kg/yr 5 Atmospheric P Load kg/yr 6 Septic P Load kg/yr 7 Inflow P Conc mg/m3 8 Overflow Rate m/yr 9 Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Residence Time yrs 19 TS Discr Score 20 Prob(Eutrophic) 22 Prob(Oligotrophic)	260.51 41.49 129.34 35.08 54.60 0.00 31.01 4.62 0.78 0.58 17.89 7.55 16.18 3.72 0.00 0.00 0.00 0.00 0.00 0.45 0.03 0.02 0.77 0.21	90.40 18.14 56.26 16.77 18.20 0.00 8.13 1.38 0.23 0.14 6.16 3.71 8.75 1.94 0.00 0.00 0.00 0.00 0.15 0.01 0.03 0.14 0.17	0.35 0.44 0.43 0.48 0.33 0.00 0.26 0.30 0.24 0.34 0.49 0.54 0.52 0.00 0.54 0.52 0.00 0.00 0.33 0.26 1.63 0.19 0.81	130.1417.3054.1913.4828.030.0018.362.540.430.368.982.825.491.310.000.000.000.000.230.02-0.040.48-0.13	521.47 99.49 308.70 91.29 106.35 0.00 52.38 8.38 1.41 0.93 35.62 20.17 47.73 10.56 0.00 0.00 0.00 0.00 0.88 0.04 0.08 1.06 0.56
REDICTED VARIABLE: 11 P Spring	mg/m3) cu	7 = .3444	16	
INPUT VARIABLE	MEAN	. cv	DY/DX	DLY/DLX	% VAR.
<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 9 Wetland Area km2 11 Mean Depth m 15 Runoff m/yr 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 31 Wetland P mg/m3 32 Atmos P Load kg/km2-yr 35 Error - Watshd 36 Error - P Reten</pre>	$\begin{array}{c} 0.76\\ 2.00\\ 0.95\\ 7.22\\ 3.31\\ 0.58\\ 1.82\\ 2.63\\ 3.61\\ 0.44\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 1.00\\ 1.00\\ 1.00\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.298 0.200 0.250 0.200 0.550	$\begin{array}{c} -0.302 \\ -0.302 \\ -0.302 \\ -0.301 \\ 0.953 \\ 3.408 \\ -0.558 \\ -0.302 \\ -0.940 \\ -0.757 \\ 0.023 \\ 0.060 \\ 0.028 \\ 0.216 \\ 0.099 \\ 0.017 \\ 0.079 \\ 0.125 \\ 14.137 \\ -7.539 \end{array}$	$\begin{array}{c} -0.013 \\ -0.034 \\ -0.016 \\ -0.122 \\ 0.176 \\ 0.110 \\ -0.057 \\ -0.044 \\ -0.190 \\ -0.018 \\ 0.019 \\ 0.050 \\ 0.024 \\ 0.181 \\ 0.315 \\ 0.135 \\ 0.135 \\ 0.066 \\ 0.210 \\ 0.790 \\ -0.421 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.026\\ 0.012\\ 0.026\\ 0.012\\ 0.085\\ 0.019\\ 1.108\\ 1.024\\ 0.760\\ 0.147\\ 4.115\\ 47.399\\ 45.304 \end{array}$

runl-sensitivity				S	tar
PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
Total P Load kg/yr Undeveloped P Load kg/yr Agricultural P Load kg/yr Urban Runoff P Load kg/yr Atmospheric P Load kg/yr Satmospheric P Load kg/yr Septic P Load kg/yr Toflow P Conc mg/m3 Overflow Rate m/yr Residence Time yr Residence Time yr 10 1 - P Retent Coef 11 P Spring mg/m3 12 Chlorophyll-a mg/m3 13 Max Chl-a mg/m3 14 Secchi Depth m 15 Oxygen Depl Rate g/m2-day 16 Hypol Depth m 17 Days of O2 Supply 18 P Residence Time yrs 19 TS Discr Score 20 Prob(Eutrophic) 22 Prob(Oligotrophic)	42.13 21.89 4.47 8.27 6.90 0.60 21.98 8.33 0.18 0.73 15.97 6.78 14.30 4.01 0.00 0.00 0.00 0.00 0.13 0.02 0.01 0.74 0.25	$\begin{array}{c} 13.00\\ 8.23\\ 1.74\\ 3.48\\ 2.30\\ 0.12\\ 5.85\\ 1.62\\ 0.03\\ 0.11\\ 4.85\\ 3.17\\ 7.31\\ 2.02\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.03\\ 0.01\\ 0.02\\ 0.18\\ 0.20\\ \end{array}$	0.31 0.38 0.39 0.42 0.33 0.20 0.27 0.19 0.19 0.15 0.30 0.47 0.51 0.50 0.00 0.00 0.00 0.23 0.26 1.74 0.80	$\begin{array}{c} 22.72 \\ 10.32 \\ 2.05 \\ 3.56 \\ 3.54 \\ 0.40 \\ 12.91 \\ 5.65 \\ 0.12 \\ 0.54 \\ 8.70 \\ 2.66 \\ 5.14 \\ 1.46 \\ 0.00 \\$	78.10 46.45 9.74 19.21 13.44 0.90 37.43 12.30 0.26 0.98 29.31 17.27 39.76 10.97 0.00 0.0
runl-sensitivity					
PREDICTED VARIABLE: 11 P Spring EAN = 15.9679 STD. DEV.	mg/m3 = 4.850	27 CV	/ = .3037	51	
INPUT VARIABLE	MEAN	CV	DY/DX	DLY/DLX	% VAR.
<pre>1 Conifer For Area km2 2 Hardwood For Area km2 3 Mixed For Area km2 4 Untilled Agric Area km2 5 Tilled Agric Area km2 6 Urban Area km2 7 Lake Area km2 9 Wetland Area km2 11 Mean Depth m 15 Runoff m/yr 16 Shoreline Septic Use cap/yr 21 Septic P Factor (kg/cap-yr) 24 Conifer For P mg/m3 25 Hardwood For P mg/m3 26 Mixed For P mg/m3 27 Untilled Agric P mg/m3 28 Tilled Agric P mg/m3 29 Urban P mg/m3 31 Wetland P mg/m3 32 Atmos P Load kg/km2-yr 35 Error - Watshd 36 Error - P Reten</pre>	$\begin{array}{c} 0.79\\ 0.91\\ 0.39\\ 0.34\\ 0.03\\ 0.09\\ 0.23\\ 0.09\\ 1.48\\ 0.67\\ 12.00\\ 0.05\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 15.00\\ 1.00\\ $	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.200\\ 0.333\\ 0.300\\ 0.550\\ \end{array}$	-1.079 -1.078 -1.081 -1.081 9.550 30.298 -2.029 -1.082 -1.325 -1.295 0.019 4.547 0.201 0.231 0.098 0.085 0.007 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.087 13.125 -4.355	$\begin{array}{c} -0.054 \\ -0.062 \\ -0.026 \\ -0.023 \\ 0.017 \\ 0.169 \\ -0.029 \\ -0.006 \\ -0.123 \\ -0.054 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.189 \\ 0.217 \\ 0.092 \\ 0.080 \\ 0.026 \\ 0.196 \\ 0.021 \\ 0.164 \\ 0.822 \\ -0.273 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 1.547\\ 2.047\\ 0.368\\ 0.279\\ 0.009\\ 2.076\\ 0.019\\ 3.230\\ 65.903\\ 24.391 \end{array}$

runl-sensitivity				Wa	nana
PREDICTED VARIABLE	MEAN	STD DEV	CV	5%	95%
Total P Load kg/yr	98,80	37.22	0.38	46.51	209,90
2 Undeveloped P Load kg/yr	35.05	18.37	0.52	12,28	100.00
3 Agricultural P Load kg/vr	24.80	12.88	0.52	8.77	70.10
4 Urban Runoff P Load kg/vr	9.94	5.53	0.56	3.26	30.24
5 Atmospheric P Load kg/yr	28.50	9,50	0.33	14.63	55.51
6 Septic P Load kg/yr	0.53	0.10	0.20	0.35	0.78
7 Inflow P Conc mg/m3	27.73	7.42	0.27	16.25	47.35
8 Overflow Rate m/yr	3.75	1.55	0.41	1.64	8.55
9 Residence Time yr	0.27	0.11	0.41	0.12	0.61
10 1 - P Retent Coef	0.69	0.12	0.18	U.48	24 76
11 P Spring mg/m3 12 Chlorophyll=2 mg/m3	19.00	3.13	0.30	10.45	24.70
12 Chiofophyria mg/mg 13 May Chiaa mg/m3	17 32	8 82	0.51	6 26	47.97
14 Secchi Depth m	3,57	1.83	0.51	1.28	9,95
15 Oxygen Depl Rate g/m2-day	0.00	0.00	0.00	0.00	0.00
16 Hypol Depth m	0.00	0.00	0.00	0.00	0.00
17 Days of O2 Supply	0.00	0.00	0.00	0,00	0.00
18 P Residence Time yrs	0.19	0.07	0.39	0.09	0.41
19 TS Discr Score	0.03	0.01	0.24	0.02	0.04
20 Prob(Eutrophic)	0.02	0.03	1.52	-0.04	0.07
21 Prob(Mesotrophic)	0.77	0.14	0.18	0.49	1.04
22 Prob(Oligotrophic)	0.22	0.10	0.75	-0.11	0.54
runl-sensitivity					
PREDICTED VARIABLE: 11 P Spring	mg/m3				
EAN = 19.045 STD. DEV	. = 5.729	99 CV	3008. =	65	
INPUT VARIABLE	MEAN	cv	DY/DX	DLY/DLX	% VAR.
l Conifer For Area km2	1.11	0.000	-0.536	-0.031	0.000
2 Hardwood For Area km2	4.04	0.000	-0.534	-0.113	0.000
3 Mixed For Area km2	0.78	0.000	-0.536	-0.022	0.000
4 Untilled Agric Area km2	1.81	0.000	-0.535	-0.051	0.000
5 Tilled Agric Area km2	0.90	0.000	2.015	0.096	0.000
6 Urban Area Km2 7 Jako Jugo km2	0.23	0.000	0.999 1 510	0.083	0.000
9 Metland Area km2	1 49	0.000	-0.535	-0.042	0.000
11 Mean Depth m	1.02	0.000	-2.624	-0.140	0.000
15 Runoff m/yr	0.32	0.412	-9.128	-0.151	4.288
16 Shoreline Septic Use cap/yr	10.50	0.000	0.010	0.005	0.000
21 Septic P Factor (kg/cap-yr)	0.05	0.200	2.026	0.005	0.001
24 Conifer For P mg/m3	15.00	0.200	0.068	0.053	0.126
25 Hardwood For P mg/m3	15.00	0.200	0.245	0.193	1.648
26 Mixed For P mg/m3	15.00	0.200	0.047	0.037	0.061
2/ Untilied Agric P mg/m3	15.00	0.200	0.110	0.087	0.331
20 TILLEG AGRIC P mg/m3 20 Urban D mg/m2	5/.00	0.111	0.055	0,104 0,101	0.305
$31 \text{ Wetland P mg/m}^2$	15 00	0.220	0.090	0,071	0,223
32 Atmos P Load kg/km2-vr	30.00	0.333	0.183	0.288	10.214
35 Error - Watshd	1.00	0.300	13.450	0.706	49.590
· · ·					

APPENDIX D

Charts of Observed and Predicted Lake Responses by Lake and Year

obs: = observed values, symbol = last digit of year
est: = estimated values, symbols L = landsat land use
P = planning map land use
X = "best" land use

* = overlay of two or more symbols

minimum scale values = 0 in each case

case:Bomo				.t	4			
variable: obs: est:	l spring	P 07 L XP	**	9	· · · · ·	scale	max =	35
variable: obs: est:	2 summer 09 L XP	ch1-a 1 8		*	·	scale	= xsm 	25
<pre>variable: obs: est: +</pre>	3 max ch 9 L *	1-a	8	,	, · · · · · ·	scale	max = 	50
variable: obs: est:	4 secchi		1	.8 *	90 L	scale	max = 	8
variable: obs: est: +	5 areal	hođ I	ار ب	XP +	•	scale	max = 	•75

Bomoseen

good agreement for all variables PM closer than LS

case:Carm										
variable: obs: est:	1	spring p	L	0* X	P	1	8	+	scale	max =
variable: obs: est:	2	summer chl-a L X P		+- <i>-</i>	;_ _	• + = - ·	1	8	scale 0	max = 9
variable: obs: est:	3	max chl-a L X P		┿ ╼╾╾ ,	+ -	• + -	 +-		scale	max = *
variable: obs: est:	4	secchi *1 8		PX			, 		scale	max =
variable: obs: est:	5	areal hod 7] L		*	ţ wa wa wa a	•	+-	~~~~ 4	scale	max =

Carmi

model under-predicts lake productivity, as measured by chlorophyll-a and transparency PM closer than LS chlorophyll increases dramatically in summer strong positive bias in observed chlorophyll vs obs. spring P plot observed summer chl-a/spring P = 1.1 internal and/or seasonal point-source loading indicated summer phosphorus measurements would be useful and likely to be considerably greater than spring values

case:Ceda				— — — — — — —	·				L			
variable: obs: est:	1	spring 1	2 8	0		9 L	7 X	l		scale P	max = 	35
variable: obs: est:	2.	summer (chl-a L	+- X	P	• +	+		┝╼╼╼╼┥	scale	_max = 	2.5
variable: obs:/ est:/	3	max chl-	-a	L X		P				scale	max = 	50
variable: obs:/ est:/	4	secchi		XI		· • • • • •				scale	max =	= 8
variable: obs: est: * +	5	areal h	od +-	+		•+	+-			scale	max = 	• .75

Cedar

model over-predicts spring P
wide variance between LS and PM, LS closer
need better land use definition
atmospheric loading component greatest
assumed runoff value (.31 m/yr) seems low compared with
typical (.6 m/yr) and may be partially responsible
for error, based upon sensitivity analysis

case:Curt				_ •						
variable: obs: est:	1	spring p 0 9	7 L	1	8	X	+	scale P	+ max = 	35
variable: obs:/ est:/	2	summer chl 7 L	а Х	- 4	P		+	scale	max =	- 25
variable: obs:/ est:/	3	max chl-a 7 L	X	- -		P	·····	scale	max =	= 50
variable: obs: est:	4	secchi	P	X	, +_	L	, , , , , , , , , , , , , , , , , , ,	scale	max = 	= 8
variable: obs: est: +	5	areal hod	.+_ <i>-</i>		+-		++	scale	max = 	.75

Curtis

large variance between LS and PM, LS closer to observed data LS/PM variance due to differences in urban land use need better definition of urban land use

case:Elmo		م مر م		±				• — — — d		4			L
variable: obs:/ est:/	1	spring	р 7	* L	01	X	-+			*	scale	max =	= 35
variable: obs: est:	2 8	summer * * L	chl x	-a P	+-		-+			, 	scale	max =	= 25
variable: obs: est: +	3 +-	max chl *7 0 L	L-a X	P +						•	scale	max =	- = 50
variable: obs: est:	4	secchi		0	*] 	×	_ +	L			scale	max =	= 8
variable: obs: est: * +	5	areal l	nod	· ∳⊷⊶∝∝∽	+-		-+		•		scale	max =	- = .75

Elmore

model over-predicts productivity, as measured by P and Chl-a LS closer than PM Over-prediction of transparency due to higher non-algal

Over-prediction of transparency due to higher non-algal turbidity/color than other lakes, as indicated by observed secchi vs. chl-a plot

variable: obs: est:	1	spr	ing	p L	,	XP	*	-	1	0	scale	max	+ = [
variable: obs: est:	2	sum L	ner XF	chl- 8	-a 1	- +	0	9	-+	· · · · · · · · · · · ·	scale	max	
variable: obs: est:	3	max L	ch1	-a 8 (P	- -	- +=			9		scale	max	.∓
variable: obs: est:	+ 4	sec	-+	91	0		8 PX		L		scale	max	=
variable: obs:: est:	5	area	al h	od	 L	- -	x :] P	 L	-	scale	max	

Fairfield

productivity under-predicted by all land use estimates PM closer than LS

phosphorus export probably underestimated for approx. 15% of watershed which is sedimentary

internal loading may also be important, as indicated by internal loading model

case:Harv		· · · · · ·								,						
variable: obs:/ est:/	1	sprin	9 p 73 L X	8 P	90				1			+	scale	max	= 	35
variable: obs: est:	2 8	summe * 0 LX P	r chi	1-a									scale	max	÷ ≓ 	25
variable: obs:/ est:/	3 8	max c 790 L X P	h1-a						· · ·				scale	max	₩ 	50
variable: obs: est:	4	secch	i 		+		-+	P	X	L.	9	1 +	scale *0	max	- 	8
variable: obs: est: +	5	areal	hod	- +	L +	* 	•	P	.+	+		+	scale	max	- = 	.75

Harveys

slight under-prediction of spring P estimates, exaggerated
 by high 1981 spring P value, which may be an outlier (check)

bias in P may be due to effect of S. Peacham Brook, as described in 1981 report

agreement reasonable for chlorophyll, hod

observed chl estimates variable because of hypolimnetic populations under-prediction of transparency due to low turbidity and

hypolimnetic algal populations, which have no impact on secchi check morphometry (mean depth)

case:Hort		
variable: 1 spring p obs: 1 7 8 0 9 1 est: 1 L *	scale max =	35
variable: 2 summer chl-a obs: 90 1 est:! L *	scale max =	= 25
variable: 3 max chl-a obs: * est: L XP	scale max =	= 50
variable: 4 secchi obs:/ 1 0 9 est:/ * L	scale max =	≠ 8
variable: 5 areal hod obs:1 7 1 9 est:1 L XP	scale max =	75

Hortonia

reasonable agreement for all variables PM closer than PS meta/hypolimnetic algal populations

case:1roq											
variable: obs: est:	1	spring	p	L		X	P	89	scale 1 O	max = 7 	35
variable: obs: est:	2	summer L	chl-a 0 X	a 79 P	8	1		-	scale	max =	25
variable: obs: est:	3	max chi	1-a	x	P	9			scale	max = 8 	50
variable: obs: est:	4 +	secchi	1 8*	P	0 X	L	<u>+</u>		scale	max = 	8
variable: obs: est:	5 +	areal l	hođ	L	8 ++	X -+	7 * P		scale	max = 	.75

Iroquois

substantial under-prediction of P and productivity PM closer than LS errors explained by internal loading model

case:More	1	t											
variable: obs: est:	1	spring	p LP X	 +•	7	+·	0		5	8	scale 9	max = 1	+ = 3 ·
variable: obs:/ est:/	2	summer 8 *X	chl-a	9	*	+	+-		+=	+-	scale	max -	+ = 2
variable: obs: est:	3	max chl	-a	*8		+		· · · · · · · · · · · · · · · · · · ·	+	- -+-	scale	max :	+ = 5
variable: obs:: est:	4	secchi		0		1	9 XPL	8	5		scale	max :	- 8 -
variable: obs: est:	5	areal h	od	·	LP X	+ 	0	*		 -	scale	max =	- - - -

Morey

substantial under-prediction of P, productivity, and hod aside from Shelburne, only lake outside of predicted P confidence range (6 - 26 vs. obs. mean 27) septic loadings may be higher than estimated internal loading model explains most of the deviation transparency agreement OK because of meta/hypol. algal pops. (offsetting biases)

•	
variable: 1 spring p sc obs: 8 7 0 9 1 est: L X P	cale max = 35
variable: 2 summer chl-a sc obs: 7 1 9 0 est: L X P	cale max = 25
variable: 3 max chl-a sc obs: 7 9 est: L X P	cale max = 50
variable: 4 secchi sc obs:/ 1 70 9 est:/ P X L	cale max = 8
variable: 5 areal hod sc obs: 1 est: L X	cale max = .75

Parker

v

good agreement between best land use estimates and data large variance been LS and PM land use needs better definition case:St C variable: 1 spring p scale max = 35 *9 0 obs:| 1 est: L X P ______ variable: 2 summer chl-a obs: | 8 * 1 scale max = 25est:[LXP ***~~~*** variable: 3 max chl-a scale max = 50obs:| 8 ьх р est: variable: 4 secchi scale max = 8 1 9 0 8 obs:/ P X L est:/ variable: 5 areal hod scale max = .7519 obs: est: L X P

St Catherine

obs P and productivity slightly lower than best land use estimates LS closer than PM

meta/hypolimnetic algal populations

case:Shel +----+ variable: 1 spring p scale max = 35obs: | * } est: | L X P 1 variable: 2 summer chl-a scale max = 25 obs: *| est: ĽΧ P variable: 3 max chl-a scale max = 50obs:| * ГX P est:/ ł variable: 4 secchi scale max = 8 obs: 9 8 est: | P X L variable: 5 areal hod scale max = .75obs: est: |*

Shelburne

P and productivity under-predicticted by about 6x wide variance between PM and LS, PM closer need better estimate of tilled agric land most (at least 75%) is sedimentary and poorly drained (hsg D) export coefficients substantially higher than those used

Star

case:Wino variable: 1 spring p scale max = 35 981 0 71 obs: est: | L XP - 1 variable: 2 summer chl-a scale max = 25 obs:1 est: L * variable: 3 max chl-a scale max = 50obs:| est: | L XP variable: 4 secchi scale max = 8 obs: | est:[* Ľ variable: 5 areal hod scale max = .75obs:1 est: 1* **~~~~**

Winona

model under-predicts spring P values PM closer than LS about 40% sedimentary - export coef. under-estimated

APPENDIX E

Analyses of Variance Observed Lake Quality anova for variable 2 pspr -

Lake	n	mean	std dev	variance
Bomoseen	5	2.6969	.165688	.0274525
Carmi	5	. 2,99367	.171697	.02948
Cedar	5	2.84079	.317351	.100712
Curtis	5	2.49765	.30592	.0935869
Elmore	5	2.5239	.157471	.024797
Fairfield	4	2.99409	.192948	.0372289
Harveys	5	2.62773	.308131	.094945
Hortonia	5	2,45681	.170699	.0291381
Iroquois	5	3.39181	.194939	.0380011
Morey	6	3.29855	.366193	.134097
Parker	5	2.72983	.281696	.0793524
St Cather	5	2.46424	.219791	.0483079
Shelburne	5	4.72391	.290235	0842362
Star	4	2.61876	.589563	.347585
Winona	5	3.25569	.278044	.0773087
source	dof	sum sq	mean sq	
among groups	14	23.8306	1.70218	
within groups	59	4.73419	.0802406	
total h	73	28.5648	F= 21.2135	median ¹

anova for variable 4 chla

Lake	n	mean	std dev	variance
Bomoseen	4	1.68142	.294419	.0866827
Carmi	4	3.08143	.185077	.0342534
Curtis	1	1.84055	0	0
Elmore	5	1.44086	.240302	.0577452
Fairfield	4	2.34691	.359321	.129112
Harveys	5	1.27194	.246462	.0607436
Hortonia	3	1.30114	.318475	.101427
Iroquois	5	2,35246	.216424	.0468392
Morey	4	2.25299	.315637	.0996266
Parker	4	1.82632	.217274	.0472082
St Cather	4	1.15808	.31115	.0968145
Shelburne	2	4.32763	.346513	.120071
Star	2	2.98435	.213745	.0456867
source	dof	sum sq	mean so	
among groups	12	27.8513	2,32094	
within groups	34	2.51102	.0738534	
total	46	30.3623	F = 31.4263	
h				

anova for variable 5 chlmax

Lake	n	mean	std dev	variance
Bomoseen	2	2.69681	.557524	.310833
Carmi	2	4.17427	.0217491	4.73022E-04
Curtis	1	2.44235	0	0
Elmore	4	2.1346	.119213	.0142117
Fairfield	2	3.07488	.596278	.355547
Harveys	4	1.96781	.236242	.0558103
Hortonia	2	1.79176	0	0
Iroquois	2	3.60393	.544547	.296532
Morey	3	3.01829	.0390259	1.52302E-03
Parker	2	2.75267	.343747	.118162
St Cather	1	1.4816	· 0	0
Shelburne	2	4.94672	.090394	8.17108E-03
Star	2	3.61709	.170527	.0290794
source	dof	sum sq	mean sq	
among groups	12	24.304	2.02534	
within groups	16	1,33194	.0832462	
total h	28	25,636	F= 24.3295	

anova for variable 6 secchi

Lake	n	mean	std dev	variance
Bomoseen	4	1.53389	.148826	.0221491
Carmi	4	.609375	.122391	.0149795
Curtis	1	1.335	0	0
Elmore	5	1.17369	.0690249	4.76444E-03
Fairfield	4	1.04803	.304382	.0926485
Harveys	5	1.89489	.0558181	3.11566E-03
Hortonia	3	1.59472	.0626105	3.92008E-03
Iroquois	5	.975517	.205933	.0424086
Morey	5	1.5517	.235082	.0552638
Parker	4	1.33366	.125137	.0156592
St Cather	4	1.85382	.164057	.0269146
Shelburne	2	717742	.510626	.260739
Star	2	164252	.0832851	6.93641E-03
source	dof	sum sq	mean sq	
among groups	12	18.5655	1.54712	
within groups	35	1.21478	.0347081	
total	47	19.7802	F= 44.5752	
anova for variable 7 hod

Lake	n	mean	stá dev	variance
Bomoseen	2	967584	0	0
Carmi	2	-1.43499	.177706	.0315795
Fairfield	1	798508	0	0
Harveys	2	994252	0	0
Hortonia	3	892184	.227016	.0515365
Iroquois	4	790481	.152638	.0232983
Morey	3	682095	.0817813	6.68818E-03
Parker	1	916291	0	0
St Cather	2	,904555	.0524022	2.74599E-03
source	dof	sum sq	mean sq	
among groups	8	.798504	.099813	
within groups	11	.220669	.0200608	
total h	19	1.01917	F≠ 4.97552	

anova for variable 3 tdo

Lake	n	nean	sta dev	variance
Bomoseen	2	4.73342	0	0
Carmi	2	3.85802	.177708	.03158
Fairfield	1	4.32722	0	0
Harveys	2	6.19385	Ō	õ
Hortonia	3	4.66632	.227008	.0515328
Iroquois	4	4.1083	.152644	.0233002
Morey	3	3.86015	.0817751	6.68716E-03
Parker	1	4.51634	0	0
St Cather	2	5.07956	.0524078	2.74658E-03
source	dof	sum sq	mean so	
among groups	8	9.28119	1.16015	
within groups	11	.220673	.0200611	
total	19	9.50186	F= 57.8306	
h				

