Dynamic Model for Stormwater Treatment Areas Features & Potential CERP Applications

W. Walker & R. Kadlec

CERP Water Quality Team Meeting South Florida Water Management District October 10, 2003

Slides will be posted at wwwalker.net/dmsta

DMSTA Applications

- Design & Optimization of Treatment Facilities
- Integrating Treatment Research & Monitoring Data
- Interpreting "Real-Time" STA Performance Data
- Identifying Data Gaps (Research, Monitoring)
- Design & Evaluation of CERP Alternatives
- Feedback to Adaptive Process for Achieving Longterm Water Quality Objectives

Evolution of P Balance Models for Everglades Applications

- STA Design Model (1994)
- Everglades P Gradient Model (1997)
- DMSTA (2000)
- DMSTA / EPGM Hybrid (200X?)

Phosphorus Balance Models

- Engineering-Oriented
- Limited Input Data & Calibration Requirements
- Calibrated & Tested vs. Regional Datasets

 Natural Wetlands
 - Stormwater Treatment Areas
 - Experimental Platforms
- Applicability Limited to Data Boundaries
- Uncertainty Evaluated
- Spreadsheet Platform with User Interface

W. W. Walker & R.H. Kadlec for U.S. Department of the Interior				
Model	STADM	EPGM	DMSTA	HYBRID
Description	STA Design Model	Everglades Phos. Gradient Model	Dynamic Model for STA's	EPGM/DMSTA Hybrid
Development Dates	1993-1995	1996-1997	1999-2002	Concept
Primary Purposes	Design of Phase I Stormwater Treatment Areas	Impacts of STA Discharges on WCA's	Design of Enhanced Stormwater Treatment Areas - All EPA Basins	Same as EPGM/DMST + WCA Recovery + CERP Applications
Applic. to Natural Wetlands	WCA-2A	WCA's	WCA-2A; C111	Everglades
Dynamic Time Scale	Steady State	Years	Days> Years	Days> Years
Computational Platform	Any Spreadsheet	Lotus or Excel	Excel / Visual Basic	Excel / Visual Basic
Wetland Trajectory	Steady State	Enrichment	Enrichment	Enrichment or Recover
Spatial Configuration	Gradient (Plug Flow)	Gradient (Plug Flow)	1-Dim. Branched (Cells in Series, Parallel)	General 1-D Branched Linked to Existing Hydr Models (NSM Output)
Model Coefficients	1	3	3	7
Calibration Basis	WCA-2A, Treatment Wetlands	WCA-2A	~70 Platforms: Tmt Wetlands, Test Cells, Mesocosms	EPGM/DMSTA; Update to Include Threshold Research, EPA REMAI ENP & USGS Researc

DMSTA Features

- Treatment Cells in Series and/or Parallel
- · Hydrology and Hydraulics
 - Water budget, stage-discharge,seepage - Tanks-in-series flow pattern
- Dynamic Phosphorus Cycling
 - Water column storage
 - Solid (biomass, sorption) storage
 - Uptake, recycle, permanent burial

Reservoir Component

Reservoir Functions:

- Reduce peak inflows to STA
- Improve STA performance
- Reduce STA outflow spikes & marsh impacts
- Remove P

Input Specifications:

- Ratio maximum to mean STA inflow
- Maximum reservoir volume constraint Outflow rules
- Empty ASAP or Fixed hydraulic residence time (V/Q)
- 2nd Order P Removal Rate

Wetland Design Information

- Surface area
- Mean width
- Outflow control depth. (Weir setting for example)
- Community type. (Triggers selection of P-removal parameters)
- Hydraulic efficiency (Number of Tanks in Series)
- Depth triggering bypass
- Inflow triggering bypass •
- Outflow pump capacity
- Out-seepage feed-back fraction
- Out-seepage feed-forward fraction
- Out-seepage concentration

Driving Variables

- Daily time series of water inflows
- Daily time series of inflow concentrations
- Daily time series of rainfall
- Daily time series of evapotranspiration
- Atmospheric deposition (wet, dry)
- In-seep supply elevation
- In-seep rate coefficient
- Seepage water inflow concentration
- Out-seep receiving elevation
- Out-seep rate coefficient

Water Balance & Hydraulics Water mass balance, level pool: $A \frac{dh}{dt} = Q_i + A \cdot (P - ET) - Q_o \pm I$ Stage-discharge relation: $Q_o / W = ah^b$

Phosphorus Removal Parameters

Three primary parameters:

- 1. Community turnover rate, or biogeochemical cycling rate, Kss.
- 2. Lowest attainable P concentration, C_o .
- Community P storage potential, measured as the water concentration C₁ at which the community stores 1000 mgP/m².

Three secondary parameters:

- 4. The depth dependence maximum, Z_{max} .
- 5. The community transition midpoint, S_M .
- 6. The community transition bandwidth, S_B.

Topics

- DMSTA Applications
- Model Concept & Evolution
- Features
- Limitations
- Future Directions
- Demonstration
- Potential CERP Applications

DMSTA Long-Term Workplan

- Track STA Performance
- Track Treatment Research Platforms
- Track Natural Areas
- Enhance Model Platform / Interface
- Enhance Hydraulic Features
- Enhance Reservoir Model
- Enhance P Cycling Model
- Model for Enrichment & Recovery of Natural Areas
 Develop New Model Releases for Use in Design

Potential Enhancements to P Cycling Model

- Velocity effects on P uptake
- Inlet P speciation
- Live vs. dead biomass storage
- Calcium
- Soil and/or Floc Compartments
- Startup Simulation
- Vegetation changes driven by system variables (loads, soil P, water column P, depth, etc)
- Other, as identified in STA tracking & research

Potential Enhancements to Hydraulic Features

- Increase number of treatment cells (now 6)
- Increase flexibility for cell-to-cell routing
- Add seepage modeling options (cross-talk?)
- Add stage/discharge modeling options
- Allow user-specified water balances
- Variable bottom topography
- Other, as identified by model users

Topics

- DMSTA Applications
- Model Concept & Evolution
- Features
- Limitations
- Future Directions
- Demonstration
- Potential CERP Applications

Potential Water Quality Benefits of Reservoirs

- · Reduce peak inflows to STA
 - Improve STA performance
 - Protect STA vegetation
- Remove P
- Reduce STA outflow spikes & marsh impacts
- Increase Operational Flexibility

DMSTA Reservoir Component

Input Specifications

- Ratio maximum to mean STA inflow
- Maximum reservoir volume constraint
- Outflow rules

 Empty ASAP or
 Fixed hydraulic residence time (V/Q)
- 2nd Order P Removal Rate

Needed for CERP Applications

- More Hydraulic Options
- Calibration of P Removal Model

- How will it perform?
- Can P uptake be "Optimized" ?
 - Facility design
 - Startup / soil preparation / seeding
 - Depth /Outflow regulation
 - Vegetation Management (Herbicides etc)
- Tradeoffs with other functions/benefits?

