Dynamic STA Design Model

DESIGN MODEL STRUCTURE FOR TREATMENT WETLAND SYSTEMS AT LOW PHOSPHORUS CONCENTRATIONS FOR EVERGLADES PROTECTION

W. W. WALKER & R. H. KADLEC April 15, 2003

Applications

- Performance modeling and design of treatment wetlands for phosphorus in semi-tropical climates.
- DMSTA formed the basis for the Basin Specific Feasibility Studies.
- Forms a precursor for models of soil column phosphorus such as the Everglades Phosphorus Gradient Model (EPGM)

Parameter Redefinition

$$S^{e} = \frac{F_{z}K_{1}C^{e} - K_{3}}{K_{2}} = \frac{F_{z}K_{1}}{K_{2}}(C^{e} - \frac{K_{3}}{F_{z}K_{1}})$$

$$C_{0} = K_{3} / F_{z}K_{1} \quad (= C^{*})$$

$$\frac{S^{e}}{1000} = \frac{(C^{e} - C_{0})}{(C_{1} - C_{0})}$$

$$J^{e}_{b} = K(C^{e} - C^{*})$$

$$K = K_{1}K_{3} / K_{2}$$

Wetland Design Information A. Surface area (A). (Wetted area at normal operating depth) B. Mean wetland width (W). Allows different L:W ratios and affects stage- discharge relation. C. Outflow control depth (Z_c). (Weir setting for example) D. Community type. (Triggers selection of P- removal parameters) E. Hydraulic efficiency. (Number of TIS, N) F. Bypassing depth (Z_{max}). G. Bypassing inflow maximum (QIN_{max}). H. Outflow pump ca[pacity (QOUT_{max}). I. Out-seepage return fraction. J. Out-seepage feed-forward fraction. K. Out-seepage concentration.

Hydrologic Parameters

- Conveyance coefficient, a.
 - Depth exponent, b.

Phosphorus Removal Parameters

Three primary parameters:

- 1. Community turnover rate, or biogeochemical cycling rate, K_s.
- 2. Lowest attainable P concentration, C_o.
- 3. Community P storage potential, measured as the water concentration C_1 at which the community stores 1000 mgP/m².

Three secondary parameters:

- 4. The depth dependence maximum, Z_{max} .
- 5. The community transition midpoint, S_M.
- 6. The community transition bandwidth, S_B .

Driving Forces

- a. Daily time series of water inflows.
- b. Daily time series of inflow concentrations.
- c. Daily time series of rainfall.
- d. Daily time series of rainfall concentratons.
- e. Atmospheric dry deposition.
- f. Daily times series of evapotranspiration.
- g. In-seep supply elevation, Z_i.
- h. In-seep rate coefficient, E_i.
- i. Seepage water inflow concentration.
- j. Out-seep receiving elevation, Z_o.
- k. Out-seep rate coefficient, E_o.

Calibration Results						
	Boney Marsh	STA1W Cell 4	STC 8	Cell 4 + STC 8	STA1W Cell 4 98-99	
	Emergent	SAV	PSTA	NEWS SAV/PSTA	SAV	
K, m/yr	16	129	24	24/129	90	
Co, ppb	4	12	4	4/12	4	
C1, ppb	22	22	22	22	22	

Current Calibration Limits

	Depth Range cm	Hydraulic Loading cm/d	P Concentration
Emergent	10 - 60	2 - 20	20 - 135
SAV	20 - 90	6 - 40	15 - 135
PSTA	10 - 60	6 - 12	7 - 30

Intangibles

- Phosphorus Speciation
- Calcium Availability
- Hydrilla & Other Invasions
- Hydraulic Robustness
- Phosphorus Robustness
- Herbiciding & Other
 Vegetation Management

