Analysis of Marsh Phosphorus Data from Loxahatchee National Wildlife Refuge

prepared for

U.S. Department of the Interior

by

William W. Walker, Jr., Ph.D., Environmental Engineer 1127 Lowell Road, Concord, Massachusetts 01742 Tel: 978-369-8061 Fax: 978-369-4230 e-mail:wwwalker@shore.net

March 11, 1999

Monitoring of phosphorus concentrations at 14 stations in Loxahatchee National Wildlife Refuge (Figures 1-3) is required for determining compliance with the Everglades Settlement Agreement (USA et al., 1995). The Agreement establishes stage-dependent limits on the monthly geometric-mean concentration across all stations. Interim and long-term limits were derived using marsh data collected at the same stations between 1978 and 1983. Compliance with interim limits is expected to provide water quality similar to that present in 1978-1979. Under the terms of the proposed modified consent decree (USA et. al, 1995), compliance with interim limits is required by February 1, 1999 and compliance with long-term limits is required by December 31, 2006. Data collected between 1993 and 1998 (Figures 1 -5) provide a recent baseline, an opportunity to refine sampling procedures, and basis for characterizing spatial and temporal variability in marsh P concentrations. Periodic review of sampling procedures and results by the Everglades Technical Oversight Committee will help to ensure that the collected data are representative and appropriate for tracking compliance starting in February 1999.

In 1978-1983 (period of record used for deriving limits), samples were collected in a bucket dropped from a hovering helicopter. Current procedures involve collection from the ground, away from the helicopter wash, in laboratory-prepared sampling bottles, and with extreme care not to disturb the bottom sediments. It seems likely that risk of contamination was considerably higher with the historical procedure. The risk of contamination under current procedures is unknown, but is thought to increase as water depth decreases.

In 1993-1997, samples were not collected when the water depth at given station was less than ~20 cm. This criterion reflected concerns about potential contamination of samples collected in shallow waters. The protocol resulted in several missing values and possible reductions in the accuracy and precision of the monthly geometric means used for determining compliance. The number of sampled stations is plotted against stage for the 1978-1983 and 1993-1998 periods in Figure 6. Based upon the fact that the number of stations did not decrease appreciably at low stage in 1978-1983, it is unlikely that a minimum sampling depth criterion was invoked during that period. In 1993-1998, the decrease in the number of sampled stations at low stages is partially responsible for the relatively high standard errors of the marsh geometric means on the corresponding dates (Figures 4 & 5).

A special study was undertaken in 1997 to examine the relationship between water depth at each station and the reproducibility of the measured P concentrations. The study involved collection of triplicate samples at each station in 11 out of the 17 sampling rounds between August 1997 and December 1998. The basic premise was that if sampling at shallow depths introduced contamination, then the variability among replicate samples would be higher at shallower depths. Results described below indicate no significant relationship between water depth and variance among replicates for water depths between 10 and 140 cm. Sampling at depths down to 10 cm appears to be feasible without affecting the reproducibility of the results. Results of the study are also useful for evaluating the potential effects of replicate sampling on the precision of the spatial geometric mean.

The data used in this study were collected by South Florida Water Management District (SFWMD) under monitoring project "EVPA". Results are summarized in the following tables:

- 1 Total P Concentrations (ppb), September 1993 December 1998
- Water Depths (cm), September 1993 December 1998
- 3 Data from Replicate Sampling Period, August 1997 December 1998

Phosphorus concentrations reported in Table 1 are each derived from single samples reported in SFWMD's primary water quality database (replicates not used). Total water column depths were infrequently recorded in 1993-1995 (Table 2). The depth of sample collection was generally one half of the total water column depth at each location. Triplicate samples were collected in 11 out of the 17 months between August 1997 and December 1998 (Table 3). Concentrations reported in Table 3 are the geometric means of replicate samples (primary sample plus 1 or 2 duplicates).

Spatial variations in geometric mean P concentrations, frequency of concentrations exceeding 10 ppb, and water depth are shown in Figure 1, 2, and 3, respectively. These are based upon the 1993-1998 period. Bar charts of similar data are shown in Figures 7 and 8. Generally, concentrations are higher and depths are shallower in the northern portions of the Refuge, as compared with the interior and southern locations. The concentration pattern may reflect penetration of phosphorus loads from the S5A pumping station and/or effects of shallower water depths.

Figure 9 plots the water depth at each station against the average stage used for tracking compliance (gauges 7, 8C, & 9) for the intensive survey period (August 1997-December 1998). A regression of the mean water depth against stage (not shown) has a slope of 1.0 (when both depth and stage are expressed in feet). Thus, there is reasonable consistency, on the average, between the depth and stage measurements. Spatial variations in topography and water surface elevation are presumably responsible for the wide range of depths observed on any given date. Results indicate that depths generally exceed 20 cm at all stations when the average stage exceeds ~16.7 feet. The lowest stage (15.3 ft) was observed in June 1998, when three stations were sampled and the depth ranged from 12 to 20 cm. Compliance would not be determined under these extreme conditions, since stage was below the specified minimum stage of 15.41 ft (lower range of 1978-1983 data used for developing limit equations).

Figure 10 plots the geometric mean concentration and variability among replicates as a function of water depth for the August 1997-December 1998 period. Variability is expressed as a coefficient of variation (% variation around the geometric mean) and is computed as the standard deviation of natural-log-transformed concentrations. There is a slight negative correlation between concentration and depth (r = -0.37, p < 0.01). Three mechanisms may be involved:

- 1. Effects of location (shallower stations located in northern areas closest to S5A)
- 2. Actual increases in concentration occurring at shallow depths, attributed to diffusion of phosphorus from sediment porewaters, focusing / "alligator hole" effects; and/or lower water residence times in Refuge as a whole; and/or
- 3. Artifacts of the sampling process.

Even if sampling artifacts are present, it is unlikely that contamination effects are greater than those experienced in 1979-1983, when sampling methods were relatively crude (see above). The relative unimportance of sampling artifacts is supported by the absence of a significant correlation between water depth and variability among replicates (r = 0.18, p>0.10). Similar conclusions are reached when the geometric mean and CV are plotted against stage (Figure 11). These results indicate that the precision of the sampling process is independent of water depth over the 10-140 cm range. Consistent sampling at depths down to 10 cm is recommended.

Impacts of spatial and sampling variability on the precision of the monthly geometric mean can be evaluated using the following model:

$$Y_{dsr} = ln (TP, ppb) = \mu + \delta_d + \delta_{ds} + \delta_{dsr}$$

where,

 Y_{dsr} = natural log of concentration on date d, at station s and in replicate r

 μ = natural log of the long-term geometric mean for the marsh

 δ_d = date effect (mean = 0, standard deviation = σ_d)

 δ_{ds} = spatial effect (mean = 0, standard deviation = σ_s)

 δ_{dsr} = replicate error (mean = 0, standard deviation = σ_r)

The model has been calibrated by applying a nested one-way analysis of variance (Snedocor & Cochran, 1989) to marsh data collected between August 1997 and December 1998 (excluding June 1998, when the stage was below the compliance test limit). Resulting parameter estimates are:

Temporal: $\sigma_d = 0.20$

Spatial: $\sigma_s = 0.22$

Replicate: $\sigma_r = 0.18$

For the present purposes, each of the variance terms is assumed to be random. In fact, a portion of the temporal variance is non-random or related to deterministic factors (stage-dependence, fixed seasonal effects, Figures 5 & 12). Similarly, a portion of the spatial variance is non-random (related to station location, Figures 1-2, 7 & 8). Additional analyses would be required to further partition these variance components. Because non-random components are ignored, results discussed below may over-estimate the standard errors of the marsh geometric means.

Variability among replicates (18%) represents the combined effects of variations in sampling and laboratory analyses. Results from the Everglades Round Robin (triplicate analyses performed on same sample) can be used to estimate analytical variations. In 13 samples with mean

concentrations between 5 and 25 ppb, the relative standard deviation among replicates ranged from 10% to 23% for major government and university labs participating in the study. Based upon these results, an appreciable portion of the variance among replicates in the Refuge study can be attributed to the analytical variations associated with measuring phosphorus levels in this low concentration range.

For a sampling program design consisting of n_s stations and n_r replicates per station, the standard error of the log mean on a given date (Y_d) can be estimated from:

SE
$$(Y_d) = [\sigma_s^2/n_s + \sigma_r^2/(n_s n_r)]^{1/2} = [0.0034 + 0.0023]^{1/2} = .076$$

The standard error of the log mean approximately equals the relative standard error (RSE) of the geometric mean expressed as a percent. With 14 stations and 1 replicate per station, the RSE is estimated at 7.6%. This represents the expected uncertainty in the geometric mean on any date when all 14 stations are sampled. Approximately 59% of the variance in the geometric mean [(.0034 / (.0034 + .0023)] is attributed to spatial variability and 41%, to replicate variability. The following table demonstrates sensitivity of the RSE to alternative designs for the sampling program:

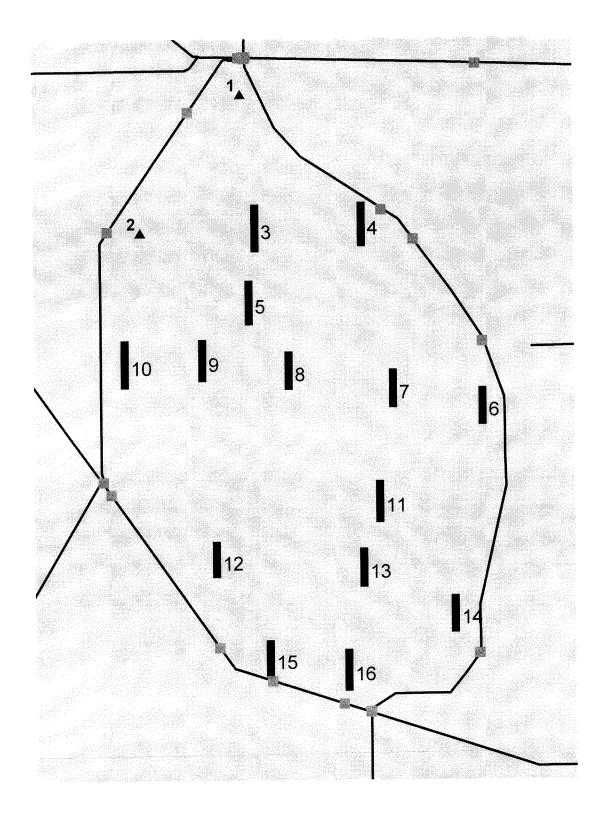
1	3		
1	2	3	5
14.2%	12.7%	12.1%	11.7%
11.6%	10.4%	9.9%	9.5%
10.0%	9.0%	8.6%	8.3%
9.0%	8.0%	7.7%	7.4%
8.2%	7.3%	7.0%	6.7%
7.6%	6.8%	6.5%	6.2%
	1 14.2% 11.6% 10.0% 9.0% 8.2%	1 2 14.2% 12.7% 11.6% 10.4% 10.0% 9.0% 9.0% 8.0% 8.2% 7.3%	14.2% 12.7% 12.1% 11.6% 10.4% 9.9% 10.0% 9.0% 8.6% 9.0% 8.0% 7.7% 8.2% 7.3% 7.0%

Replicate sampling would provide a modest increase in precision, but may not be appropriate because it was not performed during the period of model calibration (1978-1983). Effects of sampling and analytical error during that period are inherent in the regression models used for estimating the interim and long-term limits at a given stage. During the model calibration period, the relative standard errors of the marsh geometric means averaged 17%, as compared with 7.6% estimated above for recent data. It appears that recent refinements to sampling and/or analytical methodology have improved precision significantly.

Since a portion of the replicate variability is attributed to analytical error, continued refinements to laboratory procedures would also provide modest increases in precision. It does not appear that marsh sampling difficulties (down to a depth of 10 cm) are contributing significant variance to the overall process of tracking compliance in the Refuge. Therefore, collection of replicate samples in the future (beyond those normally required for QA/QC purposes) does not seem necessary or appropriate.

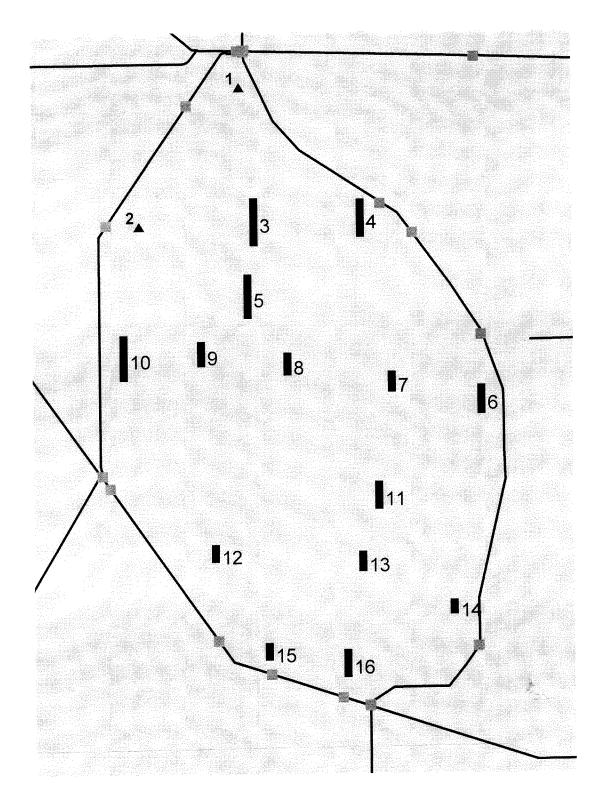
References

Snedecor, G.W. & W.G. Cochran, <u>Statistical Methods</u>, Eight Edition, Iowa State University Press, 1989.

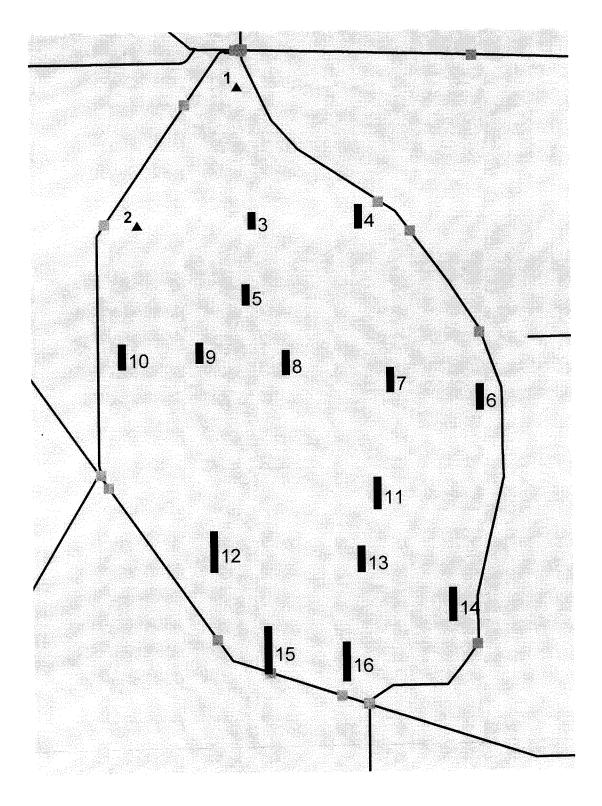

United States of America, South Florida Water Management District, & Florida Department of Environmental Protection, "Joint Motion for Approval of Modifications to the Settlement Agreement Entered as a Consent Decree", U.S. District Court, Southern District of Florida, Case 88-186-CIV-HOEVELER, June 1995.

List of Tables

- 1 Total P Concentrations (ppb), September 1993 December 1998
- Water Depths (cm), September 1993 December 1998
- 3 Data from Replicate Sampling Period, August 1997 December 1998


List of Figures

- 1 Geometric Mean TP (Map)
- 2 Frequency > 10 ppb (Map)
- Water Depths (Map)
- 4 Marsh Geometric Means & Stage vs. Time
- 5 Marsh Geometric Means vs. Stage
- 6 Number of Sampled Stations vs. Stage
- 7 Spatial Variations in Phosphorus
- 8 Spatial Variations in Water Depth & Phosphorus
- 9 Water Depth vs. Stage
- 10 Station Geometric Means & Replicate Variability vs. Depth
- 11 Station Geometric Means & Replicate Variability vs. Stage
- 12 Seasonal Variations in Phosphorus & Stage


2 0 2 Miles

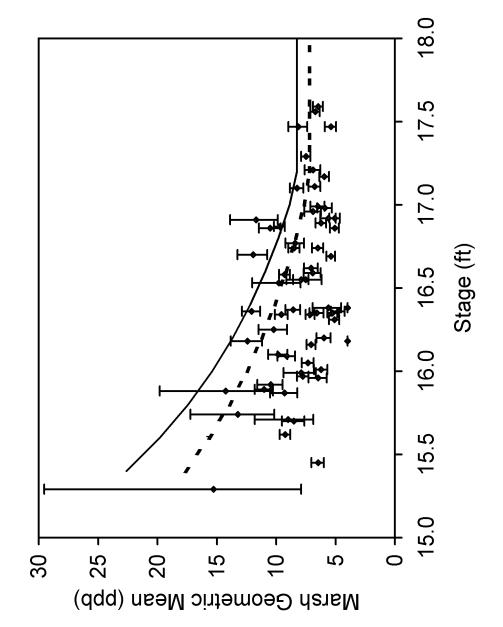
Geometric Mean TP (ppb) 1994-1998 Range 6.7 - 9.0 ppb

2 0 2 Miles

Frequency TP > 10 ppb 1994-1998 Range 8 - 31%

2 0 2 Miles

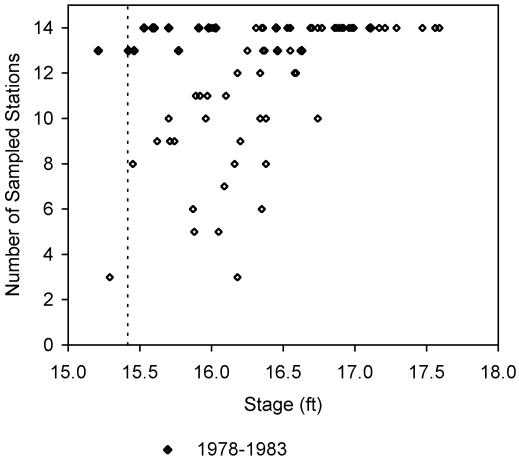
Mean Water Depth (cm) 1994-1998 Range 31 - 93 cm


66

86 86 -Interim Limit ---- Longterm Limit Marsh Geometric Means & Stage vs. Time 97 6 96 96 Marsh GM +/- 1 Std Error 92 92 94 8 8 93 15.0 + -0 52 20 15.5 5 10 17.0 Ŋ 18.0 17.5 16.5 16.0 Marsh Geometric Mean (ppb) Stage (ft)

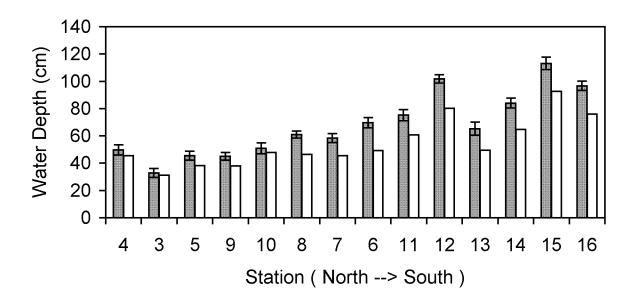
66

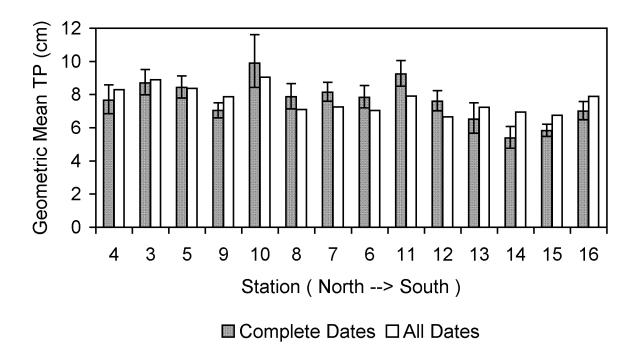
Limits not applicable to June 1998 results because stage was below 15.42 ft.


Marsh Geometric Means vs. Stage

Marsh ———Interim Limit - - - Longterm Limit

Means +/- 1 Standard Error September 1993 - December 1998

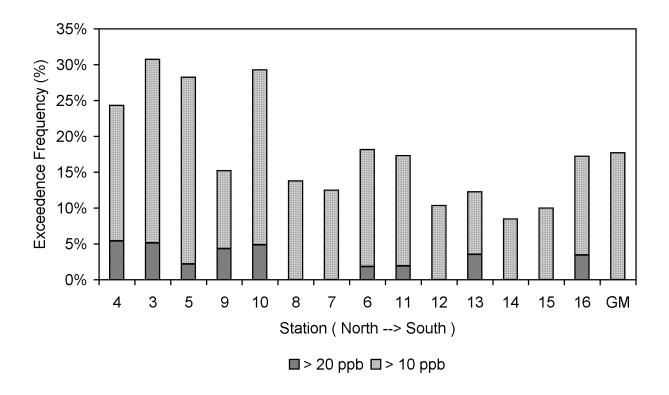

Number of Sampled Stations vs. Stage

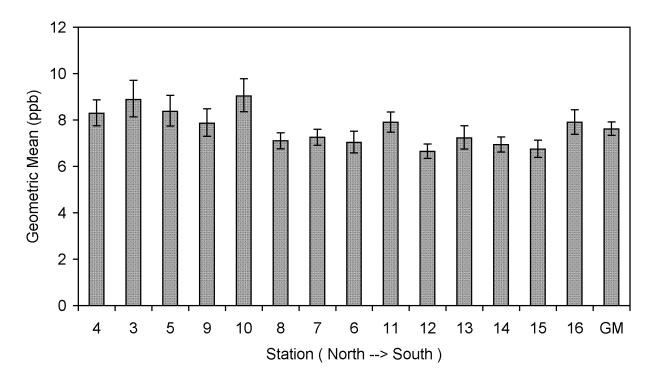


1993-1998

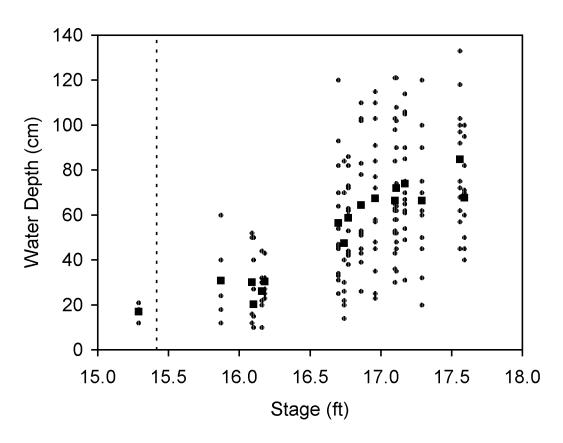
----- Cutoff for Compliance Test

Spatial Variations in Water Depth & Phosphorus

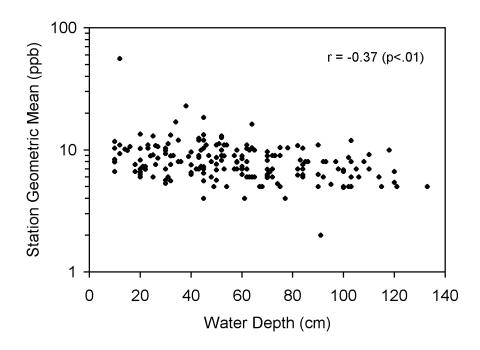


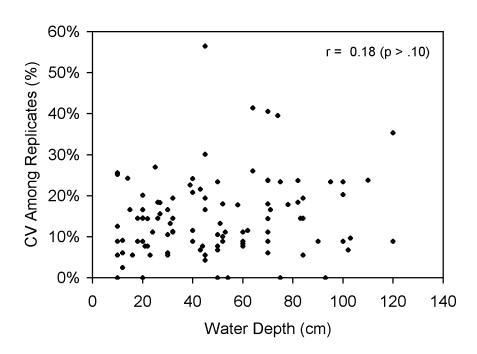


Means +/- 1 Standard Error
All Dates = September 1993 - December 1998
Complete Dates = 10 months between August 1997 & December 1998 when each station was sampled.


Spatial Variations in Phosphorus

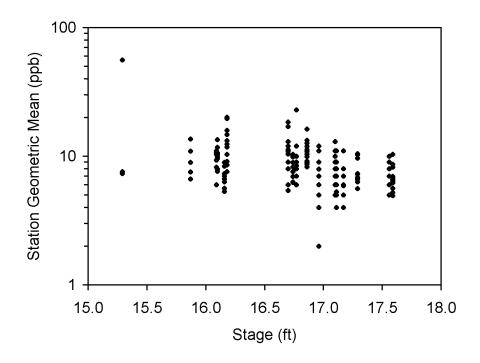
September 1993 - December 1998

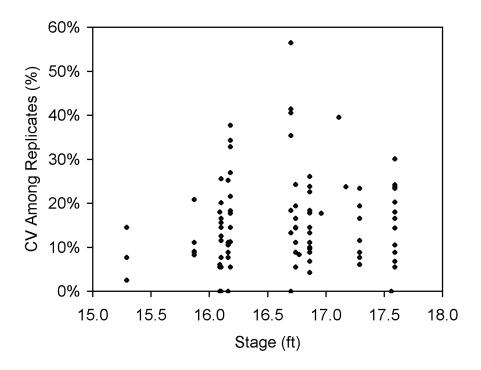

Water Depth vs. Stage



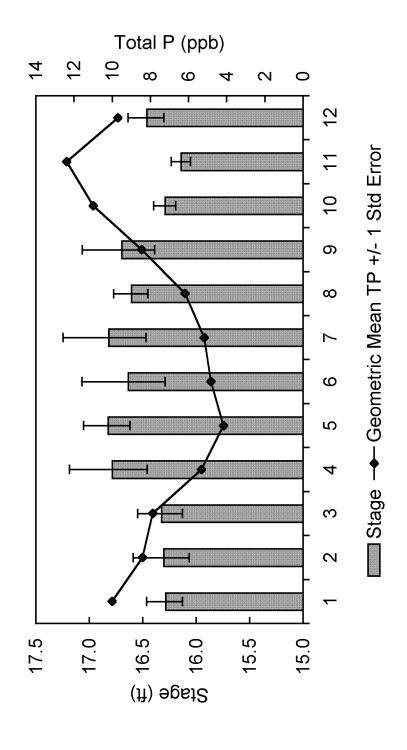
- Station Mean ----- Cutoff for Compliance Test
- Y = Total Water Depth at Sampling Station
- X = Average Stage at Gauges 7, 8-C, & 9

August 1997-December 1998


Station Geometric Means & Replicate Variability vs. Depth



August 1997 - December 1998


Station Geometric Means & Replicate Variability vs. Stage

August 1997 - December 1998

Seasonal Variations in Phosphorus & Stage

September 1993 - December 1998

Total P Concentrations (ppb), September 1993 - December 1998

Total P Concentrations (ppb), September 1993 - December 1998															
	LOX3	LOX4	LOX5	LOX6	LOX7	LOX8	LOX9	LOX10	LOX11	LOX12	LOX13	LOX14	LOX15	LOX16	<u>GeoMn</u>
9309			10	9	8	8	14	10	9	7	10	9	9	10	9.29
9312	8	6	15	5	11	6	9	7	_	8	8	6	10	8	7.89
9401	11	11	11	· ·	6	7	9	7		5	5			7	6.93
												5	4		
9402	4	15	4	4	13	4	4	4	4	4	4	4	4	4	4.78
9403	18	8	11	4	6	5	4	43	7	4	8	9	7	8	7.90
9404				11	11	10			8	9	7	9	9	10	9.25
9405				7		9			7	4	6	7	6	7	6.48
9406			12	4	4	5	34		20		20	6	5		9.01
	20		12				54			7				7	
9407	20			7	10	6			7	7	7	10	10	7	8.52
9408									7		9	7	6	8	7.33
9409	11		15	11	9	14	10	11	9	18	16	15	12	10	12.09
9410	10	10	14	11	8	8	10	10	11	8	10	11	7	10	9.72
9411	7	6	10	8	7	7	10	10	10	6	4	9	20	8	8.15
9412	8	6	8	5	5	6	5	7	8	5	7	7	20	7	6.90
9501	40	7	10	6	8	8	10	20	10	5	7	20	20	30	11.70
9502	10	6	80	5	6	10	10	6	5	7	5	4	6	5	7.51
9503	50	6	20	8	10	20	20	20	8	6	5	4	4	5	9.78
9504		10	7	9	6	6	20	10	10	8	20	9	10	20	10.21
9505				20	10	10			20	5	10	8	10	78	13.24
9506			10	20			20								
			10		9	8	20		10	9	8	8	10	10	10.47
9507			13	6	6	8			6	5	4	4	7	10	6.46
9508	8	5	5	4	9	11	4	12	6	7	7	7	6	6	6.57
9509	7	5	6	10	7	4	4	5	4	4	4	5	4	5	5.08
9510	4	7	4	4	6	5	12	5	7	4	5	8	4	5	5.40
9511	4	8	5	4	4	4	4	5	8	7	7	9	14	6	5.89
9512	6	8	6	6	5	6	5	9	4	4	4	5	4	6	5.40
9601	4	23	5	4	5	5	5	6	6	6	6	5	4	5	5.60
9602	6	7	6	7	7	7	8	9	8	4	7	6	4	4	6.23
9603	11	15	8	7	5	8	7	8		9	9	9	10	9	8.58
9604	9	11	10	4	4	5	7	9	7	5	5	6	5	5	6.22
9605		14	10	12	8	8	,	13	13	11	11	12	8	14	11.04
	_								13	11	11	12	0	14	
9606	9	21	4	5	4	4	4	4							5.60
9607	7	7	4	4	9	4	4	8	4	7	4	5	4	4	5.10
9608	8		7		8	7	7		8	5	8	12	8	9	7.75
9609	8	8	5	5	7	6	7	10	6	6	10	5	4	7	6.49
9610	8	10	7	10	10	7	7	9	6	4	5	4	4	5	6.49
9611	4			4				9		5	4		7	4	5.07
		4	4	4	4	4	6		6			10			
9612	6	8	6		8	8	7	16	6	6	8	5	6	6	7.05
9701			8	9	8	7	8	9	8	7	6	6	5	6	7.14
9702									5	4	5	5	6	7	5.25
9703				4	4	4		4	4	4	4	4	4	4	4.00
9704				4	5	9		•	7	7	5	8	4	7	5.99
9705					5	3			,	16	3				
				44		_				10		10	6	14	14.27
9706				4	4	4									4.00
9707				8	10	12	10		12	8	8	8	9	12	9.56
9708	13	9	13	11	11	12	9	17	16	8	35	9	8	11	11.94
9709	13	13	7	11	10	12	9	14	22	13	9	7	7	8	10.50
9710	7	11	8	10	8	10	9	13	10	8	7	6	5	7	8.25
9711	8	7	9	7	6	7	8	8	11	8	4	5	5	5	6.76
9712	7	5	7	8	9	7	7	6	8	10	6	5	5	6	6.71
9801	6	4	11	7	6	5	5	5	8	6	5	5	6	7	5.95
9802	11	6	12	6	9	9	6	12	7	7	4	4	5	5	6.89
9803	12	10	7	7	8	6	7	23	9	8	6	7	7	9	8.40
		10						20							
9804	17		17	14	18	10	25		9	7	9	10	12	11	12.43
9805			8	8	10	11	7		12	11	12	9	7	17	9.84
9806										7	57		9		15.28
9807						15				8	10	6	9	10	9.30
9808				6	11	9				11		10	8	10	9.11
9809				6	6	6			7	9		7	8	8	7.05
9810			0	9			0		,		10		7	11	
	_	4.0	8		9	6	9	_	_	9	10	8			8.49
9811	9	10	5	6	5	5	5	7	6	6	6	8	6	9	6.46
9812	8	8	9	8	11	8	7	7	10	6	6	6	6	7	7.51
GeoMn	8.88	8.29	8.34	7.00	7.24	7.08	7.77	9.02	7.88	6.65	7.19	6.91	6.72	7.86	7.59

			W	<i>l</i> ater D	enths	(cm), S	Septen	nber 19	993 - D	ecemb	er 199	8			
	LOX3	LOX4	LOX5	LOX6	LOX7	LOX8					LOX13		LOX15	LOX16	Mean
9309															
9312															
9401															
9402															
9403															
9404 9405															
9406			10	26	21	29	14		36		26	39	84		32
9407	18		10	20	21	26			36	38		36	64	58	35
9408		34		31	31	36	23	23	43	56		50	73	61	42
9409	33	47	30	41	42	43	42	28	38	71	41	82	110	81	52
9410	43	67	50	51	52	51	51	51	49	80	34	59	110	77	59
9411															
9412															
9501 9502															
9502 9503	24	43	22	47	37	40	30	30	50	70	50	50	70		43
9504	27	40	22	7,	0,	40			00	, 0		00	, 0		40
9505															
9506			30	40	30	40	30								34
9507			20	30	40	40			40			50	70	50	43
9508	35	20	25	40	35	35	25	25	40			50	70	50	39
9509	40	40	60	60	50	60	40	50	25			75	100	75	55
9510 0511	47 25	80	90	90	80	72 25	62	70	95			100	125	147	90
9511 9512	25 38	40 55	40 37	50	40 60	35 52	30 50	30 95	93 82			88 82	125 128	93 125	63 75
9601	30	50	50	60	60	70	50	40	70			100	130	120	72
9602	33	48	60	75	71	52	48	47	80			80	110	93	69
9603	20	30	20	50	40	40	30	20	61	97		85	90	80	51
9604	15	32	21	47	41	40	23	200	62	62	50	47	72	51	55
9605		20		32	35	30		20	48	70	37	48	85	63	44
9606	27	41	47	42	45	52	30	28							39
9607	30	48	40	48	65	48	33	32	63			50	89	50	51
9608 9609	22 30	23 40	48 37	28 60	31 60	48 53	23 55	42	48 76	58 103		34 77	61 115	50 78	39 63
9610	31	62	57	69	59	54	65	42 54	76 82		67	83	125	83	72
9611	45	51	34	65	60	53	37	47	73			85	120	100	66
9612	23	40	28	52	45	50	35	30	73			73	103	79	55
9701			21		38	42	30	28	68	83	50	68	110	75	56
9702									62		52	64	107	73	73
9703				53	37	23		32	65			69	94	80	59
9704				38	30	32			57			65 54	108	81	61 57
9705 9706				25 40	33	37			73	63	49	54 58	83 83	62 56	57 54
9707				42	43	41	24		62		49	55	74	62	53
9708	25	47	31	54	46	45	33	34	64			70	120	82	56
9709	26	51	39	78	52		43	45	64			83		102	64
9710	30	53	36	58	62	63	43	52	65			84	121	98	66
9711	35	58	52	74	64		48	58	90			90	121	102	72
9712	45	68	57	92	75	72	62	72	97			100	133	103	85
9801 9802	31	61	62 35	70 72	65 50	67 57	54	49	85			90 91	114	105	74
9803	23 43	25 44	43	72 53	58 60	62	48 42	45 38	84 73	110 86		91 60	115 82	103 72	67 59
9804	40	77	45	55	00	02	42	30	25			23	32	43	30
9805			10	10	10	27	10		10			20		20	20
9806										21	12		18		17
9807										40	12	18	60	24	31
9808				20	16					50		30		30	30
9809			10	20	30	30			10			20	44	22	24
9810	E0.	AF	22 50	20	30	40	26 45	70	00	84 100		70		84	47 69
9811 9812	50 20	45 45	50 50	70 75	40 62	70 60	45 32	70 45	60 70			82 90		100 100	68 66
961∠ Mean	31	45 45	38	49	46	46	38	48	61	80		90 65		76	54
•									- '		.0			. •	

Data from Rei	olicate Sam	pling Period	. August 1997 -	- December 1998

				-		-	_								
Sample Cour															
1121 9708	LOX3	LOX4 1	LOX5	LOX6 2	LOX7	LOX8	LOX9 1	LOX10 1	LOX11 3	LOX12	LOX13	LOX14 3	LOX15 3	LOX16	Mean 2.1
9709	3	3	3	4	3	3	3	3	3	4	3	3	3	3	3.1
9710	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0
9711 9712	1	1	1 1	2 1	1 2	1 1	1	1	1	1	1 1	1	1	1	1.1 1.1
9801	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1.1
9802 9803	1	1	1 1	1 1	2	1 1	1	1	1 1	1	1 1	1	1	1	1.1 1.1
9804	3	'	3	3	2	3	3	'	3	3	3	3	3	3	2.9
9805			3	3	3	4	3		3	3	3	3	3	3	3.1
9806 9807						3				3	2	3	3	3	2.7 3.0
9808				3	3	3				3		3	3	3	3.0
9809 9810			1 3	3 3	3 3	3 3	3		3	3 3	3	3	3	3	2.8 3.0
9811	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3.0
9812	3 1.7	1.6	2.0	2.3	2.2	2.2	1.9	1.6	2.1	2.4	2.1	2.3	2.3	2.3	3.0 2.1
Mean	1.7	1.0	2.0	2.3	2.2	2.2	1.8	1.0	2.1	2.4	2.1	2.3	2.3	2.3	2.1
Ln (TP)															
2.25	LOX3	LOX4	LOX5	LOX6	LOX7	LOX8	LOX9	LOX10	LOX11	LOX12	LOX13	LOX14	LOX15	LOX16	Mean
9708 9709	2.6 2.4	2.2 2.4	2.4 2.2	2.4 2.3	2.4 2.3	2.5 2.5	2.2 2.2	2.8 2.6	2.3 2.8	2.1 2.5	2.9 2.2	1.8 2.1	1.7 2.2	2.4 2.2	2.3 2.3
9710	1.9	2.4	2.1	2.3	2.1	2.3	2.2	2.6	2.3	2.1	1.9	1.8	1.6	1.9	2.1
9711 9712	2.1 1.9	1.9	2.2 1.9	1.7 2.1	1.8 2.2	1.9 1.9	2.1 1.9	2.1	2.4 2.1	2.1 2.3	1.4 1.8	1.6 1.6	1.6 1.6	1.6	1.9 1.9
9801	1.8	1.6 1.4	2.4	1.8	1.8	1.6	1.6	1.8 1.6	2.1	1.8	1.6	1.6	1.8	1.8 1.9	1.8
9802	2.4	1.8	2.5	1.8	2.1	2.2	1.8	2.5	1.9	1.9	1.4	0.7	1.6	1.6	1.9
9803 9804	2.5 2.7	2.3	1.9 2.5	1.9 3.0	2.1 2.8	1.8 2.3	1.9 3.0	3.1	2.2 2.2	2.1 2.0	1.8 2.1	1.9 2.3	1.9 2.6	2.2 2.5	2.1 2.5
9805			2.1	2.1	2.3	2.4	2.1		2.5	2.3	2.3	2.3	2.0	2.6	2.3
9806						2.6				2.0	4.0	1.0	2.0	2.2	2.7 2.2
9807 9808				1.8	2.4	2.6				2.0 2.4	2.4	1.9 2.3	2.2 2.1	2.2	2.2
9809			1.9	1.8	1.7	1.7			1.9	2.2		1.9	2.0	2.0	1.9
9810 9811	2.2	2.3	1.9 1.7	2.1 1.9	2.3 1.9	1.8 1.8	2.0 1.9	2.1	1.8	2.0 1.6	2.3 1.9	2.2 1.8	1.8 1.7	2.3 1.9	2.1 1.9
9812	1.9	2.0	1.9	2.3	2.3	2.0	1.7	1.7	2.3	1.8	1.8	1.8	1.9	1.9	2.0
Mean StdDev	2.2 0.31	2.0 0.36	2.1 0.24	2.1 0.34	2.2 0.28	2.1 0.32	2.0 0.34	2.3 0.51	2.2 0.26	2.1 0.22	2.1 0.66	1.9 0.40	1.9 0.27	2.1 0.30	2.1 0.25
				0.54	0.20	0.52	0.54	0.51	0.20	0.22	0.00	0.40	0.27	0.50	0.20
Geometric M	leans of Re LOX3	plicate San LOX4	nples LOX5	LOX6	LOX7	LOX8	LOX9	LOX10	LOX11	LOX12	LOX13	LOX14	LOX15	LOX16	Gmean
9708	13.0	9.0	11.3	11.0	11.0	12.0	9.0	17.0	10.4	8.0	18.5	6.0	5.4	10.9	10.3
9709	10.9	11.3	8.8	10.4	10.0	12.6	8.7	13.3	16.3	12.0	9.0	8.3	9.2	8.7	10.5
9710 9711	7.0 8.0	11.0 7.0	8.0 9.0	10.0 5.3	8.0 6.0	10.0 7.0	9.0 8.0	13.0 8.0	10.0 11.0	8.0 8.0	7.0 4.0	6.0 5.0	5.0 5.0	7.0 5.0	8.3 6.6
9712	7.0	5.0	7.0	8.0	9.0	7.0	7.0	6.0	8.0	10.0	6.0	5.0	5.0	6.0	6.7
9801 9802	6.0 11.0	4.0 6.0	11.0 12.0	5.9 6.0	6.0 7.9	5.0 9.0	5.0 6.0	5.0 12.0	8.0 7.0	6.0 7.0	5.0 4.0	5.0 2.0	6.0 5.0	7.0 5.0	5.9 6.5
9802	12.0	10.0	7.0	7.0	7.9 8.5	6.0	7.0	23.0	9.0	8.0	6.0	7.0	7.0	9.0	8.4
9804	14.8		11.8	19.6	15.9	10.3	20.1		9.1	7.6	8.6	10.3	13.3	12.5	12.3
9805 9806			8.0	8.0	10.3	10.7	8.0		11.7	9.6 7.3	9.9 56.0	10.3	7.7 7.6	13.5	9.6 14.6
9807						13.6				7.6	11.0	6.6	9.0	9.0	9.2
9808			7.0	6.0 6.3	10.7 5.6	9.3 5.3			6.6	11.0 9.0		10.3 7.0	8.2	9.3 7.3	9.1 6.8
9809 9810			7.0	8.3	9.9	6.3	7.6		0.0	7.6	10.1	9.0	7.3 6.3	10.3	8.1
9811	8.7	10.3	5.6	7.0	6.5	6.2	6.5	8.2	6.3	4.9	6.6	6.2	5.2	6.9	6.7
9812 GeoMean	6.6 9.1	7.3 7.7	6.9 8.4	10.5 8.1	10.3 8.7	7.3 8.2	5.6 7.7	5.6 9.9	9.7	6.3 7.9	6.3 8.4	6.3	6.6 6.7	6.6 8.0	7.1 8.1
Standard Dev 0.91	viations Am LOX3	ong Replic LOX4	ates (Ln TF LOX5	P) LOX6	LOX7	LOX8	LOX9	LOX10	LOX11	LOX12	LOX13	LOX14	LOX15	LOX16	RMS
9708			0.13	0.00					0.41	0.00	0.56	0.41	0.35	0.18	0.32
9709 9710	0.18	0.13	0.23	0.18	0.10	0.09	0.07	0.04	0.26	0.10	0.11	0.15	0.24	0.07	0.15
9710				0.40											0.40
9712					0.00										0.00
9801 9802				0.24	0.18										0.24 0.18
9803					0.08										0.08
9804 9805	0.34		0.38 0.00	0.33	0.18 0.06	0.06 0.16	0.38 0.13		0.27 0.26	0.15 0.12	0.18 0.17	0.06 0.15	0.11 0.08	0.22	0.25 0.14
9806			0.00	0.00	0.00		0.10		0.20	0.08	0.03		0.15		0.10
9807 9808				0.00	0.06	0.08 0.06				0.21 0.00	0.09	0.09 0.06	0.11 0.18	0.11 0.06	0.12 0.08
9809				0.00	0.00	0.00			0.09	0.00		0.00	0.18	0.08	0.09
9810			0.14	0.15	0.17	0.09	0.15			0.15	0.24	0.11	0.19	0.06	0.15
9811 9812	0.07 0.17	0.06 0.17	0.11 0.23	0.14 0.23	0.24 0.12	0.24 0.08	0.30 0.19	0.18 0.19	0.09 0.06	0.20 0.09	0.17 0.09	0.24 0.09	0.23 0.09	0.23	0.19 0.15
RMS	0.21	0.13	0.21	0.20	0.13	0.12	0.23	0.15	0.24	0.13	0.23	0.17	0.18	0.15	0.15
Total Depths	(cm)														
57.11_	LOX3	LOX4	LOX5	LOX6	LOX7	LOX8	LOX9	LOX10	LOX11	LOX12	LOX13	LOX14	LOX15	LOX16	Mean
9708 9709	25 26	47 51	31 39	54 78	46 52	45 52	33 43	34 45	64 64	93 103	45 53	70 83	120 110	82 102	56 64
9710	30	53	39 36	78 58	62	63	43	52	65	103	62	83 84	121	98	66
9711	35	58	52	74	64	62	48	58	90	108	45	90	121	102	72
9712 9801	45 31	68 61	57 62	92 70	75 65	72 67	62 54	72 49	97 85	118 106	92 75	100 90	133 114	103 105	85 74
9802	23	25	35	72	58	57	48	45	84	110	77	91	115	103	67
9803 9804	43	44	43	53	60	62	42	38	73 25	86 32	63 27	60 23	82 32	72 43	59 30
9805			10	10	10	27	10		10	40	15	20	50	20	20
9806										21	12	40	18	ایہ	17
9807 9808				20	16	12				40 50	12	18 30	60 52	24 30	31 30
9809				20	30	30			10	32		20	44	22	26
9810 9811	50	45	22 50	20 70	30 40	40 70	26 45	70	60	84 100	14 71	70 82	84 95	84 100	47 68
9812	20	45	50	75	62	60	32	45	70	90	70	90	120	100	66
RMS	33	50	41	55	48	51	41	51	61	77	49	64	87	74	58