LONG-TERM ACCRETION OF PHOSPHORUS IN THE EVERGLADES STORMWATER TREATMENT AREAS

March 15, 2013

Rupesh Bhomia Wetland Biogeochemistry Laboratory University of Florida

ABSTRACT

WATER QUALITY – THE EVERGLADES

The Everglades ecosystem

- Historically oligotrophic system
- Excess nutrient (phosphorus) inputs
- Trophic structure changes
- The South Florida Water Management District (SFWMD) constructed ~18,000 ha of Stormwater Treatment Areas (STAs)
- First STA came online 1994, total six STAs till date
- STAs removed ~ 1,500 metric tons of phosphorus
- Long-term sustainability of STAs is very important

NORTH AMERICAN CONSTRUCTED WETLANDS

WETLAND PROCESSES

Two aspects of P removal processes in STAs

- Retention sedimentation, coprecipitation and biological uptake
- Accretion steady accumulation organic matter – Recently Accreted Soil
- Management goals
 - Short term
 - Long term

WETLAND PROCESSES

EVERGLADES STORMWATER TREATMENT AREAS

Source: South Florida Water Management District

STAs CONFIGURATION AND TREATMENT CELLS

Schematics not to scale

Source: South Florida Water Management District

STA VEGETATION

Emergent Aquatic Vegetation (EAV)

WHY SOILS?

- Soils are integrators of long-term water chemistry conditions
- Nutrient inputs to wetlands (specifically phosphorus) primarily stored in soil
- Nutrient concentration in soils play a big role in outflow water quality
- Spatio temporal gradients of soil nutrients are used to assess long-term nutrient impacts
- Soil biogeochemical properties are indicators of ecosystem conditions

OVERALL OBJECTIVE

Understand wetland biogeochemical processes that regulate P removal efficiency and dictate long-term stabilization of removed P

 Hypothesis – Hydraulic loading, nutrient inputs, and wetland vegetation regulate P removal efficiency and control long-term sustainability of STAs

BACKGROUND

- Available datasets on STAs (soil, water quality) were reviewed
- Phosphorus retained from water column (P_{wc}) caused enrichment of surface soil
- No clear relationship between P_{wc} and P stored in floc and soil
- Preliminary P mass balance was developed to understand P distribution in soil profile
- Inverse relationship between STA age and P stored in floc and soil

OBJECTIVE-1

Determine soil accretion rates in wetlands and explore influence of STA age on accretion rates

- Utilize stratigraphic characteristics of soil profile to identify depth of recently accreted soil (RAS)
- Hypothesis –Accumulating matter conserves the attributes of prevailing conditions (nutrient loading and vegetation) in wetlands

- As STAs age, rate of soil and P accretion slow down, resulting in higher outflow concentration

SAMPLING SITES

Base map source: South Florida Water Management District

METHODS

- Intact soil cores (n=128) between 10-40 cm depth collected using steel tube (10.2 cm internal diameter) and sectioned at 2 cm depth intervals
- Samples analyzed for physico-chemical properties (bulk-density, total P, total carbon, total nitrogen and isotopic ratios of N and C)
- Identification of change point depth using SegReg software and soil parameters
- Accretion rate determined using operational age of STAs

SAMPLING

SAMPLE PROCESSING

CHANGE POINT DETERMINATION

 Change point depth as boundary between recently accreted soil and pre-STA soil (native soil)

CHANGE POINT DETERMINATION

- Software program SegReg was used for identifying change points with 90% confidence interval
- Segmented linear regression using soil profile parameters

SegReg OUTPUT

•

.

•

.

•

ø

RECENTLY ACCRETED SOIL DEPTH

 No significant difference between RAS depths in each STA when tested separately (Tukey-Kramer HSD test, p<0.05)

RECENTLY ACCRETED SOIL DEPTH

 No significant vegetation difference on RAS depths as determined by four key parameters in each STA (Tukey-Kramer HSD test, p<0.05)

RECENTLY ACCRETED SOIL DEPTH

- Mean RAS depths in STA cells with variable vegetation (Tukey -Kramer HSD test, p<0.05)
- Avg. RAS depth for STA-1W,
 STA-2 and STA-3/4 was 15 ± 5,
 11 ± 3 and 10 ± 4 cm

SOIL ACCRETION RATES AND STA AGE

PHOSPHORUS ACCRETION RATE AND STA AGE

- Mean RAS depth ranged 10 15 cm
- Soil accretion rate in STAs 1.0 1.7 cm yr⁻¹ [within the range measured in other wetland system 0.1-2.4 cm yr⁻¹]
- Phosphorus accretion rate for these STAs ranged from
 1.3 3.0 g P m⁻² yr⁻¹
- Soil and phosphorus accretion rates showed decline over time and impacted outflow water quality
- Hydraulic conditions of STAs play key role in continued accretion

OBJECTIVE-2

Perform P mass balance in select STAs using soil P storages and water chemistry data

 Hypothesis – Internal re-distribution of P within RAS and pre-STA soils is mediated by vegetation and potentially regulates surface water quality

METHODS

- Phosphorus storages (g P m⁻²) in floc, RAS and pre-STA soils were calculated for STAs -1W, 2 and 3/4
- Mass of P for RAS and pre-STA portion was obtained for every 2 cm soil section and adding them up for whole portion
- Maximum soil depth considered for mass balance was 30 cm
- Soil sampling was conducted in WY2010, so P_{wc} was obtained for POR

METHODS

Phosphorus mass balance for select STAs

All values expressed in g P m⁻²

P_{WC}= P retained from water column [Inflow – Outflow]

FPS = Floc P storage

[WY2010]

 $P_{flux F} = P flux (Floc and RAS)$

 $[P_{flux F} = FPS - Wc]$

RAS PS= Recently Accreted Soil P storage [WY2010]

 $P_{flux PSS} = P flux (RAS and Pre-STA soil)$ $[P_{flux PSS} = RAS PS - P_{flux F}]$

Pre-STA PS = Pre-STA soil P storage

PHOSPHORUS MASS BALANCE

CONCLUSIONS AND IMPLICATIONS

- All three STAs showed P flux from pre-STA soils to RAS
- Highest P_{flux PSS} in STA-3/4, in operation for 7 years and had low POR P_{WC}
- High P_{flux PSS} suggests role of vegetation in mining subsurface P and deposition on surface through detrital accumulation
- Redistribution of P within soil layers could have implications on long-term stability of P

OBJECTIVE-3

- Assess influence of wetland vegetation (EAV vs SAV) on stability of accreted P
 - Determine proportion of reactive and stable P for two vegetation types (EAV and SAV)
 - Examine long-term sustainability of STAs by exploring stability of accreted P in floc and RAS
 - Hypothesis Different vegetation types influence P forms in RAS and potentially mobile forms could undermine long-term sustainability of STAs

WETLAND PROCESSES

SITE DESCRIPTION

Base map source: South Florida Water Management District

METHODS

- Intact soil cores from STA-1W and STA-2 (n=44)
- Soil cores separated into floc, RAS and pre-STA
- Moisture content, bulk density, total nutrients (P, C and N) were determined
- Inorganic (Pi), Organic (Po), and residual P pools were measured
- Inorganic fraction analyzed for total metals (Ca, Mg, Fe and Al)
- All comparisons were carried out using student's t-test assuming equal variances (p<0.05)

FRACTIONATION SCHEME

Modified from- Ivanoff et al., 1998

Error bars represent standard error of the mean

 Inorganic P pools as a fraction of total P in EAV and SAV (Both STAs combined)

 Organic P pools as a fraction of total P in EAV and SAV (Both STAs combined)

- Fractions shown as percentage of total P
- Inorganic and organic phosphorus together makes reactive P pool

SOIL PHYSICO-CHEMICAL PARAMETERS

	Bulk density	LOI	ТР	Са	Mg
	g cm⁻³	%	mg kg⁻¹	g kg⁻¹	g kg-1
EAV					
Floc (n=23)	0.14	76	1082	40	2.8
RAS (n=26)	0.26	84	467	37	3.3
Pre-STA (n=24)	0.30	88	244	29	2.8
SAV					
Floc (n=14)	0.21	47	845	164	4.8
RAS (n=20)	0.32	74	579	78	4.6
Pre-STA (n=20)	0.35	79	335	34	2.7

NON-REACTIVE PHOSPHORUS POOL

PHOSPHORUS AND CALCIUM RELATIONSHIP

Separation on the basis of – Vegetation and sample type

CONCLUSIONS AND IMPLICATIONS

- Approximately 20-30 % of TP present in non-reactive pools
- Reactive and non-reactive P pools did not differ significantly between SAV and EAV
- SAV could quickly remove P, but relative proportion of residual P is higher in EAV
- No difference between relative proportion of reactive and non-reactive P pools of floc, RAS, and pre-STA soil
- Organic P (Po) was higher in floc of EAV cells
- Accretion of Ca-rich layer in SAV cells suggest Ca-P coprecipitation contributing P uptake

SYNTHESIS

SYNTHESIS

SYNTHESIS

- Functional P retention pathways in STAs involve biotic and abiotic processes
- Considerable movement and redistribution of P stocks within soil profile
- Majority of accreted P distributed in reactive pool while wetlands continue to retain P
- Phosphorus treatment efficiency varies but STAs also sequester other nutrients (C and N)
- STAs provide an effective, biological option for P removal

MANAGEMENT IMPLICATIONS

Some evidence suggest soil accretion rate slows down with time – Scraping for rejuvenation?

MANAGEMENT IMPLICATIONS

MANAGEMENT IMPLICATIONS

- Some evidence suggest soil accretion rate slows down with time – Scraping for rejuvenation?
- SAV systems accrete Ca, could this affect performance of PSTA cells downstream?
- The data did not suggest clear difference in the chemical stability of accreted P, however differences due to physical characteristics may be important – SAV vs EAV particulate/ floc quality
- Assessment of STA's life span on the basis of soil accretion rates and interventions for maintaining hydraulic flow and volume

POTENTIAL NEXT STEPS

- Intensive soil analysis Spatial and temporal
- Quantification of soil accretion rates with respect to water quality effectiveness
- Stability of accreted P in other cells/STAs Refined fractionation methodology and use of advance techniques (NMR, XANES)
- Ecosystem services valuation of STAs potential benefits other than P removal

ACKNOWLEDGEMENTS

Financial support for this research

- SFWMD
- Everglades Foundation fellowship
- Society of Wetland Scientists research grant
- William K. Robertson scholarship
- UF office of research travel grant
- Davidson travel scholarship
- Florida Stormwater Association scholarship
- Graduate student council travel grants
- Soil and Water Science Department

ACKNOWLEDGEMENTS

- Advisor Dr. K. Ramesh Reddy
- Committee members Dr. Mark Brenner, Dr. Patrick Inglett and Dr. Alan Wright (UF). Dr. Michael Chimney (SFWMD)
- Personnel from SFWMD Ms. Delia Ivanoff, Dr. Hongjun Chen, and Mr. Manuel Zamorano
- Wetland Biogeochemistry Lab Ms. Yu Wang, Dr. Kathy Curtis and Mr. Gavin Wilson

THANK YOU!

