Presentation to Lake Okeechobee Advisory Committee W Walker August 1, 2000

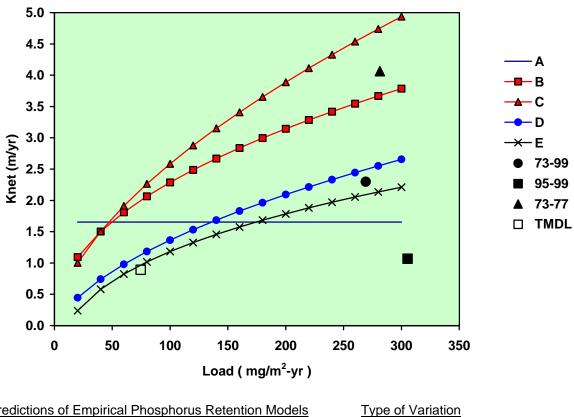
Response of Net Settling Rate (Knet) to Reductions in External Load

Published Empirical Phosphorus Models

Pre- & Post-Restoration Case Studies

Calibration of Lake Okeechobee Water Quality Model

Preliminary Results for Dynamic P Balance Model *

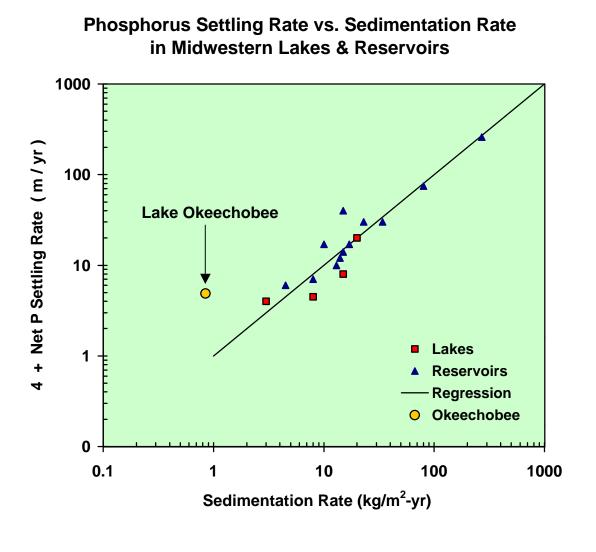

Model Structure & Parameter Estimates

Calibration Plots

Forecasts

TMDL Sensitivity to Depth

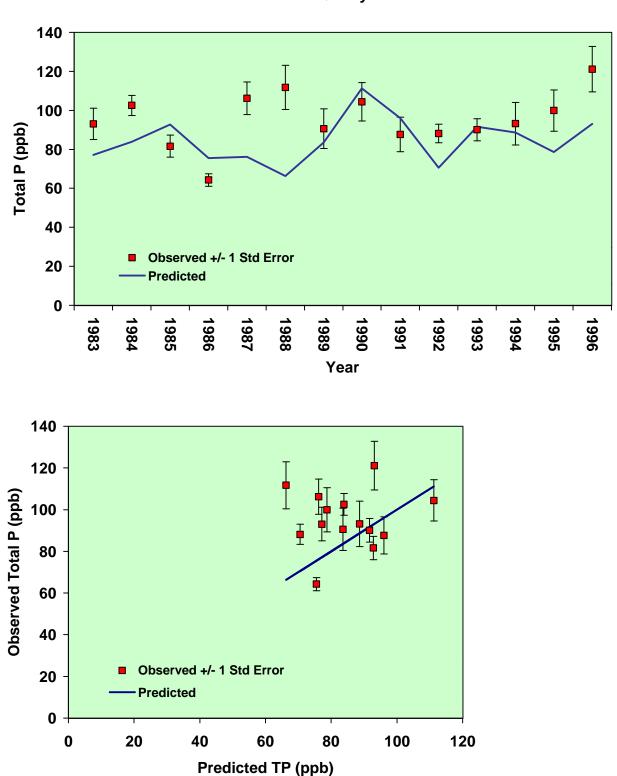
* This shows that a two-box model can be calibrated to simulate historical concentration & Knet time series. The apparent quadratic dependence of recycling rate on depth (found by examining residuals plots) indicates sensitivity to water management. This type of model should probably be run with a monthly time step, although a yearly one is used here. Results yield a steady-state Knet & TMDL similar to those derived from the one-box quasi-steady-state model discussed at previous LOTAC meetings. Results are not definitive. There are five degrees of freedom (calibrated parameters) in the model and alternative sets of parameters may fit the data equally as well. One of the parameters (burial rate) is constrained to match the average sedimentation rate (1 mm/yr) assumed in the LOWQM.



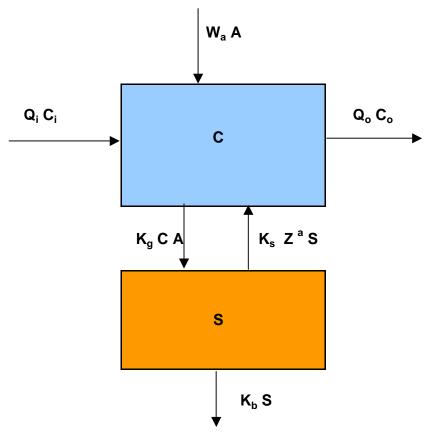
Settling Rate Response to Variations in External P Load Predicted by Empirical Phosphorus Retention Models

Predictic	ons of Empirical Phosphorus Retention Models	Type of variation
А	Vollenweider (1976)	across-lakes
В	Canfield & Bachman (1981), Natural Lakes	across-lakes
С	Canfield & Bachman (1981), Reservoirs	across-lakes
D	Walker (1985), Corps of Engineer Reservoirs	across-lakes
E	Ahl (1989)	temporal

Ahl's relationship is derived from pre- & post-restoration data from individual lakes. The other models are derived from collections of lakes & reservoirs.

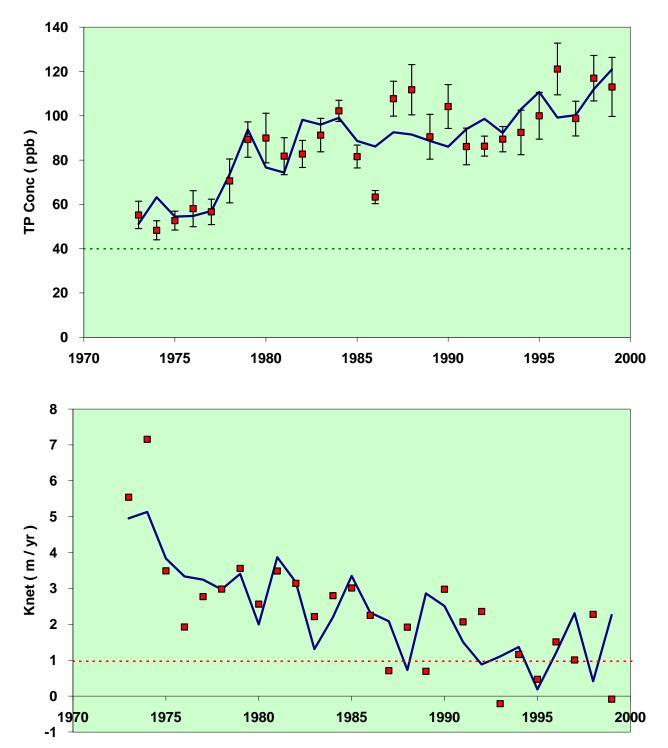

Symbols show observed values for Lake Okeechobee in various time intervals TMDL for Lake Okeechobee derived from state-model discussed at July LOTAC meeting.

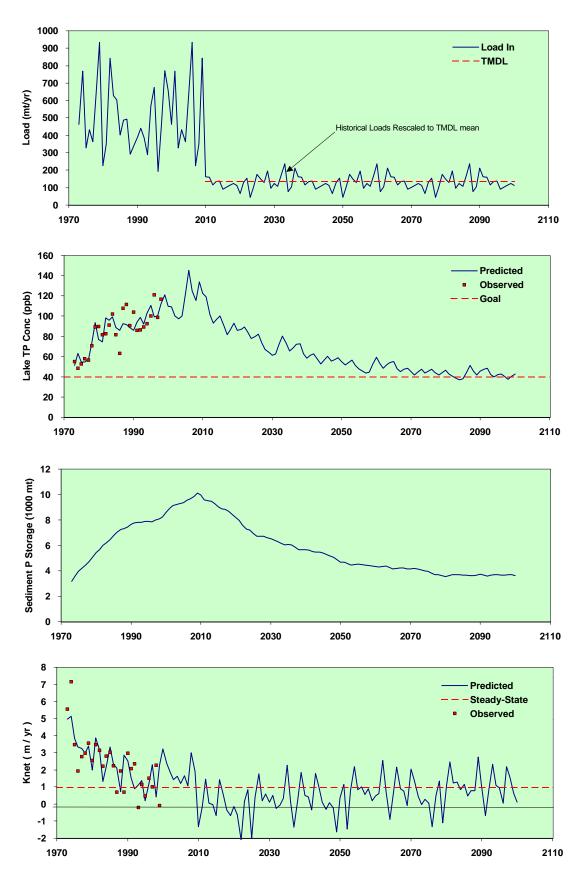
Model: Knet = S - 4

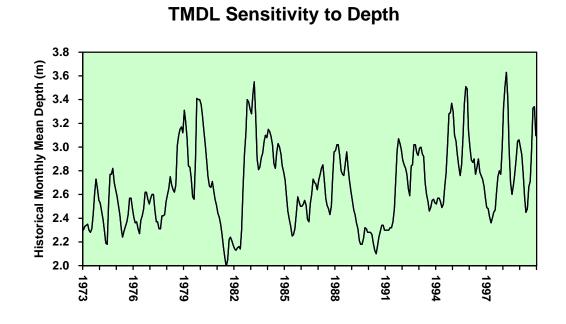

For Lake Okeechobee, mud zone sedimentation rate = 0.85 g/m²-yr predicted settling rate = -3.15 m/yr observed settling rate (from steady state model) = 0.89 m/yr

Reference: Walker, W. & J. Kunher, "An Empirical Analysis fo Factors Controlling Eutrophication in Midwestern Impoundments", in Wunderlich, W., ed., <u>Environmental Effects of Hydraulic Engineering Works</u>, Tennessee Valley Authority, Knoxville, September 1978.

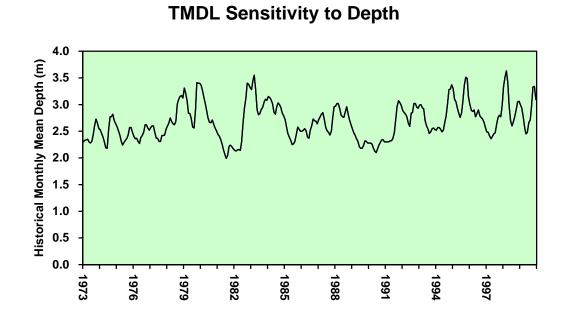
Observed & Predicted Yearly-Mean Lake Total P Concentrations Lake Okeechobee Water Quality Model Calibration


Data from file 'lowqm.cal.val.xls', June 2000




Parameter Estimates Calibrated to 1983-1999 Data:

K _g	gross settling rate (m/yr)	=	12		
Ks	recycle rate (1/yr)	=	0.02		
а	depth exponent	=	2		
K _b	burial rate (1/yr)	=	0.02 *		
S _o	initial ('73) storage (mt)	=	3000		
*burial rate computed from:					
	sediment depth (cm)	=	5		
	bulk density (g/cm ³)	=	0.15		
	sed. rate (mm/y)	=	1		
TMDL C	alculation:				
Z	mean depth (m)	=	2.7		
Knet	steady-state K _{net} (m/yr)	=	0.97		
TMDL	40 ppb TMDL (mtons/y)	=	135		
Ci	lake inflow conc (ppb)	=	41		



Simulations are run using the above historical depth time series, constraining the maximum monthly depths to values ranging from 2.0 to 3.8 m. The table shows the corresponding average depth for the entire simulation period, Knet, TMDL, and inflow concentration resulting in an average lake concentration of 40 ppb.

	Max	Max	Steady-			
	Monthly	Monthly	Mean	State		Inflow
	Depth	Elevation	Depth	Knet	TMDL	Conc
	<u>m</u>	<u>ft</u>	<u>m</u>	<u>m/yr</u>	<u>mt/yr</u>	<u>ppb</u>
	2.0	9.9	2.0	1.64	181	58
	2.2	11.3	2.2	1.40	164	52
	2.4	13.3	2.4	1.22	152	47
	2.6	14.5	2.5	1.11	144	44
	2.8	15.4	2.6	1.04	140	42
	3.0	16.1	2.6	1.00	137	41
	3.2	16.7	2.7	0.98	136	41
historical	3.4	17.5	2.7	0.98	135	41
	3.6	18.0	2.7	0.97	135	41
	3.8	18.3	2.7	0.97	135	41

Simulations are run using the above historical depth time series, constraining the maximum monthly depths to values ranging from 2.0 to 3.8 m. The table shows the corresponding average depth for the entire simulation period, Knet, TMDL, and inflow concentration resulting in an average lake concentration of 40 ppb.

	Max Monthly Depth	73-99 Mean Depth	Steady- State Knet	TMDL	Inflow Conc
	<u>m</u>	<u>m</u>	m/yr	mt/yr	ppb
	2.0	2.0	1.64	181	58
	2.2	2.2	1.40	164	52
	2.4	2.4	1.22	152	47
	2.6	2.5	1.11	144	44
	2.8	2.6	1.04	140	42
	3.0	2.6	1.00	137	41
	3.2	2.7	0.98	136	41
historical	3.4	2.7	0.98	135	41
	3.6	2.7	0.97	135	41
	3.8	2.7	0.97	135	41