Update of Statistical Framework for the Onondaga Lake \qquad
Ambient Monitoring Program
Phase II-Biological Monitoring \qquad
prepared for
Department of Water Environment Protection
Onondaga County, New York
by
William W. Walker, Jr., Ph.D.
Environmental Engineer
1127 Lowell Road, Concord, Massachusetts 01742 Tel: 978-369-8061, Fax: 978-369-4230

Web: wwwalker.net
Email: bill@wwwalker.net August 29, 2002

AMP Statistical Framework

Monitoring Program Design for Trend Detection
Null Hypothesis (H_{o}): \quad No Trend

Outcome of Hypothesis Test: \qquad

\qquad
\qquad
"Significance Level" = α, Pre-Selected
Maximum (β) $=1 \cdot \alpha$
Power $=$ Probability of Detecting Trend $=1-\beta$

- Function (Treend Number, α)

Trend Number ~ Magnade of Trendx (Years of Moritoring ${ }^{\text {ts }}$ \qquad Standard Deviaton of Yearity Means
\qquad

THE VALUE OF CONSISTENT METHODOLOGY IN LONG-TERM ENVIRONMENTAL MONITORING
G. R. BEARD ${ }^{1}$, W. A. SCOTT ${ }^{2}$ and J. K. ADAMSON ${ }^{2}$
${ }^{1}$ Soil Siovey and Land Research Centre, Cranfield Universify: Shardlow Hall, Shandlow: Derby
DE72 2GN, U.K:: ${ }^{2}$ Instimete of Ternestrial Ecolozy: Merlewood Rescanch SVation. Grange-over. Sands, Cumbria LAII GIU, UK

E-mail: Jadamson@iteac.uk
(Received 11 October 1996: accepted in revived form 4 August 1997)
Abstract. Long-term monitoring has a substantial history in both the biological and physical sciences. Over time the procedures and analytical methods imvolved in long-term monitoring have changed direct comparison of measurements either difficult or imposible. In many instances the lack of strictly defined methods or practices means that data from one projest cannot be used to enhance other projects with any degree of statistical rigour. This is amply demonstrated in the field of soil other projects with any degree of statistical rigour. This is amply demonstrated in the field of soil
classification where improvement in soil definitions, refinement of cut-off points and changes in classincation where improtement in will definitions, reninement of cut-off points and changes in data is impossible. The causes of, and safeguards against, such measurement inconsistency are examined here in the context of the United Kingdom Environmental Change Network (ECN) project. Examples of incompatible data arising from environmental studies are given and the efforts used to standardise methods and practices in the ECN programme are described in detail. The need for
standard practices is demonstrated and considered in the light of the limitations of operating what are standard practices is demonstrated and considered in the light of the limitations of operating what are relatively rigid procedures.

Sources of Measurement Uncertainty Beard et al., 1999

- Change In Technique
- Change in Personnel
- Change in External Environmental Factors
- Change in Measurement
- Change in Location
- Change in Spatial Coverage
- Change in Frequency or Timing of Measurement

Coping with Measurement Inconsistency Beard et al., 1999

- Detailed Protocols
- Detailed Recording of Methodology
- Quality Control \& Assurance
- Overlap Period for Changes in Methods
- Recording of 'Meta Data'
- Measurement Synchronization
- Otherwise ---Statistical "Adjustment"

Potential Metrics for Fish Population Data

Symbol	Description	Feature
N	Number of Organisms	Low Precision
Log ($\mathrm{N}+1)$	Log Abundance \sim Geometric Mean	Stabilize Variance
N^{5}	Square Root - Poisson Distribution	Stabilize Variance
S	Number of Species	Richness
$(\mathrm{S}-1) /$ Log N	Normalized Richness	Reduce S/N Dependence
£ $\mathrm{P}_{\mathrm{J}} \log \mathrm{P}_{\mathrm{J}}$	Shannon Weaver	Diversity

Some Unkind Words about Diversity Indices*

...connection between high diversity \& high environmental quality does not appear to be valid generally.
..the belief that more diverse communities are more stable is without support..
.answers to which questions have not yet been found..
at best ecologists may have lost a fair amount of time calculating relatively meaningless numbers...
..whatever the (Shannon-Weaver) index does measure seems to have no direct biological interpretation produced no noticeable increase in ecological understanding.
.contrary to ..., diversity indices are not independent of sample size
....ther statistical methods retain more of the information in the biological data while reducing them to a more useful \& ecologically meaningtul form.
.when used for comparative purposes, simple indices such as $\mathrm{S} \& \mathrm{~d}$ are biologically meaningful measures which are less ambigous than .. H.
$\mathrm{S}=$ Number of Specie
$d=$ Normalized Richness (S-1) / Log N
$\mathrm{H}=$ Shannon Weaver $=\operatorname{Sum}[\mathrm{Pj} \log \mathrm{Pj}]$
*Green, R., "Sampling Design \& Statistical Methods for Enuronmental Biologists", Wiley \& Sons, pp 96-102, 1979

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Refinement of AMP Concepts for Discussion

\qquad

- Appropriate Metrics
- Indices (Abundance, Richness, Diversity, etc.) \qquad
- Stratum vs. Lake Mean
- Seasonal vs. Yearly Mean
- Precision vs. Relevant Scale for Each Metric
- Specific Hypotheses
\qquad
- Spatial Variation
- Change or Trend
- Comparison with Criteria/Standards
- Comparison with Other Lakes/Streams
- Tradeoff - Consistent vs. "Improved" Designs

