APPENDIX 4: MASS-BALANCE MODELING

1. INTRODUCTION

The development and structure of a mass-balance modeling framework for Onondaga Lake is described in previous lake monitoring reports (Ecologic, 2002). The framework facilitates computation and analysis of mass balances for nutrients and other waterquality components using hydrologic and water quality data collected in the Lake and its tributaries since 1986. Lake water and mass balances are formulated on yearly and seasonal (May-September) time scales. Results provide a basis for:

- (1) Estimating the magnitude and precision of loads from each source;
- (2) Assessing long-term trends in load and inflow concentration from each source and source category (point, nonpoint, total);
- (3) Evaluating the adequacy of the monitoring program, based upon the precision of loads computed from concentration and flow data;
- (4) Developing and periodic updating of an empirical nutrient loading model that predicts eutrophication-related water quality conditions (as measured by nutrient concentrations, chlorophyll-a, algal bloom frequency, transparency, and hypolimnetic oxygen depletion) as a function of yearly nutrient loads, inflows, and lake morphometry (Ecologic, 2001).
- (5) Developing simple input/output models for other constituents; and
- (6) Developing data summaries to support integration and interpretation of monitoring results in each yearly AMP report.

This appendix updates the mass-balance framework to include 2002 data. Recent mass balances for key water quality components are summarized. Long-term trends in total loads (point, nonpoint), inflow concentrations, and outflow concentrations are documented.

2. REFINEMENTS TO MASS-BALANCE FRAMEWORK

Estimates of historical flows and loads from Crucible and direct precipitation have been adjusted based upon recent information. Because of the small magnitude of these sources (\sim 1% and \sim 2% of the total inflow after adjustment, respectively), the adjustments have relatively small impacts on the computed total flows and loads to the Lake, as well as on the outflow volumes computed by water balance.

Precipitation estimates have been updated for the entire period of record based upon data from the Hancock Airport weather station downloaded from the National Climatologic Data web site (www.ncdc.noaa.gov). Small differences were apparent relative to values used previously based upon Local Climatologic Data reports. Water budgets for the lake over the 1985-1996 period have been updated to reflect the updated precipitation record.

Throughout the 1985-2003 period, loads from Crucible have been computed using concentrations measured in samples that reflect a combination of the Crucible discharge and runoff from the Trib5A watershed. Between 1985 and 1999, flows were estimated from records provided by the industry which did not reflect the runoff component. Since 2000, the combined flows from Crucible and Trib5A have been measured directly. This change resulted in a significant increase in the average reported flows (from 0.6 cfs in 1985-1999 to 3.2 cfs in 2000-2003). The difference is presumably due to the Trib5A runoff component (averaging 2.6 cfs). To express the entire record on a consistent basis, the average flows for 1985-1999 have been increased by 2.6 cfs and the corresponding load estimates have been adjusted proportionately. Because of the sampling station location, it is not possible to separate the industrial and runoff loading components. Mass-balance results reported for Crucible therefore reflect the combined point and nonpoint inputs at this location.

2. LONG-TERM TRENDS

Yearly variations in precipitation and lake inflow volume are summarized in Figure 2. Over the 1986-2002 period, yearly runoff from the Onondaga Lake watershed varied from 30 to 73 cm and was strongly correlated with precipitation ($r^2 = 0.85$). The strength of this correlation suggests that year-to-year variations in the lake water budget can be simulated using a simple rainfall/runoff model. Runoff was 47 cm in 2002, as compared with a 17-year mean of 45 cm.

The following figures show trends in each water quality component over the entire period of record (1986-2002):

- Figure 3 Total Inflow & Outflow Concentrations
- Figure 4 Total Inflow & Outflow Loads
- Figure 5 Total NonPoint & Total Metro Loads

Ten-year (1993-2002) trends in concentration and load for each mass-balance term and water quality component are summarized in Table 1. Trends are tested using a linear regression of flow-weighted-mean concentration or load against year. Trend slopes that are significantly different from zero (p < .10 for a two-tailed hypothesis or p < 0.05 for a one-tailed hypothesis) are listed. A ten-year rolling window has been consistently used for trend analysis in yearly AMP reports. With a longer period, results would be strongly influenced by historical data that are not representative of current conditions with respect to municipal and industrial wastewater inputs. With a shorter period, results would be increasingly influenced by short-term variations in hydrology and other random factors.

For total inflows, decreasing trends in concentration and/or load are indicated for alkalinity, BOD, chloride, calcium, ammonia nitrogen, Kjeldahl nitrogen, total nitrogen, total organic carbon, soluble reactive phosphorus, total phosphorus. Decreasing trends in nutrient species and BOD are apparent in Metro loads, but not in the nonpoint loads (with the exception of soluble reactive phosphorus). For the lake outflow, significant

decreasing trends in concentration and/or load are indicated for BOD, ammonia nitrogen, total Kjeldahl nitrogen, total nitrogen, total organic carbon, total inorganic carbon, soluble reactive phosphorus, and total phosphorus. Outflow trends are generally consistent with inflow trends and improving water quality conditions resulting primarily from Metro improvements over the 1993-2002 period.

Total inflow and outflow loads were significantly elevated in 1993 as a consequence of high runoff and Metro construction activities (Figures 3-5). For this reason, the 1993-2002 trends may be unrepresentative of true long-term trends. With the exception of outflow BOD, repeating the analysis for the 1994-2002 period has no effect on conclusions regarding the presence or absence of statistically significant trends in total inflow and outflow loads or concentrations, although the trend magnitudes are somewhat diminished.

3. MASS BALANCES

Five-year average (1998-2002) mass balances for the following constituents are summarized in the following tables:

Table 2	Chloride
Table 3	Total Phosphorus
Table 4	Soluble Reactive Phosphorus
Table 5	Total Nitrogen
Table 6	Ammonia Nitrogen
Table 7	Total Phosphorus (May-September)
Table 8	Soluble Reactive Phosphorus (May-September)

Since chloride is expected to be conservative, the chloride balance provides a basis for testing the accuracy and completeness of the data and methods used to develop the mass balances. Outflow loads computed from 12-foot outlet samples exceeded inflow loads by

 $7\% \pm 3\%$ or $12,200 \pm 5,100$ metric tons/year in 1998-2002 (Table 2). Excess loads in chloride and sodium load were fairly consistent from year to year (Figure 4).

Adjustment of historical estimates of chloride and sodium loads have been necessary to account for changes in the sampling strategy for Onondaga Creek. In previous annual reports, loads from Onondaga Creek have been computed using data from the Spencer and Kirkpatrick monitoring sites. In years when data from both stations were available, results have been averaged by sampling date. Between 1985 and mid 1998, only the Spencer station was sampled. Since that time, biweekly samples have been collected at Kirkpatrick and storm-event samples have been collected at Spencer. Biweekly grabs at Spencer were stopped in 1998 and resumed in 2000. These changes do not influence load computations for most parameters because concentrations measured at these two sites are not significantly different. Apparently because of the intervening salt springs, however, concentrations of sodium and chloride average 79% higher at Kirkpatrick as compared with Spencer. All historical load estimates have been adjusted to reflect the estimated load at Kirkpatrick by applying a 79% increase in years when only Spencer data were available and 28% increase in years when the Spencer and Kirkpatrick data were averaged. [The 28% factor comes from the math: if Kirkpatrick/Spencer = 1.79, then Kirkpatrick = 1.28 x the average of Kirkpatrick & Spencer]. This results in a substantial improvement in the accuracy of the loads for Onondaga Creek and better agreement between lake inflow and outflow loads. Under the existing sampling design, storm event samples are collected only at Spencer. Collection of storm event samples at Kirkpatrick would simplify and improve the accuracy of load estimates in future years. With this change, lake loads would be computed using data exclusively from Kirkpatrick.

As discussed in the 2001 annual report (Ecologic et al, 2002) excess loads of chloride and sodium may be attributed to application of road deicing salts in ungauged portions of the watershed and/or to salt springs contributing directly to the lake. The latter mechanism is not inconsistent with current understanding of the regional aquifer derived from ongoing research by the USGS (Kappel, 2003). Groundwater modeling being performed by the

USGS may provide independent estimates of salt loads from groundwater directly to the lake for comparison with those estimated here based upon mass balances.

Over the 1998-2002 period, the average total phosphorus load was $61,100 \pm 2,000$ kg/yr, 51% of which was attributed to Metro (Table 3). Decreasing trends in load and concentration are apparent within this period (Figures 3 & 4). The existing phosphorus balance model (Ecologic, 2002) provides a means for developing preliminary projections of water quality responses likely to result from control of specific phosphorus sources. The model is driven by the yearly total phosphorus load from all sources. One important limitation is that it does not directly account for seasonal variations or phosphorus speciation. Such effects are inherent in the empirical model calibration, which may need to be revised if there are significant changes in the seasonality and/or speciation of phosphorus loads from various sources.

As the Lake approaches a phosphorus-limited condition, inputs of soluble reactive phosphorus to the epilimnion during the summer would have the greatest potential impact on algal growth. The following table summarizes flow and phosphorus inputs from Metro (discharge + bypass) expressed as a percentage of the total lake inputs on a yearly and seasonal basis, as derived from Tables 3-8:

1998-2002	Year	May-Sept
Flow	21%	25%
Total P Load	51%	57%
SRP Load	63%	73%

The relative importance of the Metro discharges ranges from 51% (based upon annual total P loads) to 73% (based upon seasonal SRP loads). During this period, the TP concentration in the Metro discharge averaged 322 ± 3 ppb (Table 3). Further significant reductions in P load to the lake are expected when Metro discharges are reduced to <120 ppb with plant upgrades required by April 2006 and currently scheduled for completion by May 2004.

REFERENCES

Ecologic, LLC et al., "Onondaga Lake Monitoring Program, 2000 Annual Report", prepared for Onondaga County, New York, November 2001.

Ecologic, LLC et al., "Onondaga Lake Monitoring Program, 2001 Annual Report", prepared for Onondaga County, New York, October 2002.

Kappel, W., U.S. Geological Survey, Presentation to Onondaga Lake Advisors Meeting, April 2003.

Mass Balance Appendix

List of Figures

- 1 Framework for Mass Balance Calculations
- 2 Precipitation, Runoff and Lake Inflow Volumes
- 3 Long-Term Trends in Total Inflow & Outflow Concentrations
- 4 Long-Term Trends in Total Inflow & Outflow Loads
- 5 Long-Term Trends in NonPoint & Metro Loads

List of Tables

- 1 10-Year Trends in Load & Flow-Weighted-Mean Concentration
- 2 Chloride Balance for 1998-2002
- 3 Total Phosphorus Balance for 1998-2002
- 4 Soluble Reactive Phosphorus Balance for 1998-2002
- 5 Total Nitrogen Balance for 1998-2002
- 6 Ammonia Nitrogen Balance for 1998-2002
- 7 Total Phosphorus Balance for May-September 1998-2002
- 8 Soluble Reactive Phosphorus Balance for May-September 1998-2002

Figure 1

Dotted Lines = Linear Trends

X-Axis = Calendar Year

Squares = Inflow, Circles = Outflow

Error Bars = +/- 1 Standard Error

Figure A4-3 Long-Term Trends in Total Inflow & Outflow Concentrations

Figure A4-4 Long-Term Trends in Total Inflow & Outflow Loads

Squares = Inflow, Circles = Outflow

Error Bars = +/- 1 Standard Error

Dotted Lines = Linear Trends

X-Axis = Calendar Year

Figure A4-5 Long-Term Trends in NonPoint & Metro Loads

Squares = NonPoint, Circles = Metro+Bypass

Dotted Lines = Linear Trends

X-Axis = Calendar Year

Error Bars = +/- 1 Standard Error

Table 1: 10-Year Trends in Load & Flow-Weighted-Mean Concentration

Load Trends (% / yr			Pe	eriod:	1993	to	2002								
T a	ΓK	005	¥.	Ļ	A	H3N	IO2N	NSO1	ктнор	<u>ں</u>	ĸN	z	20	۵.	SS
<u>Term</u> Metro	٩	<u> </u>	0	4%	<u> </u>	_12%	Z	Z	-16%	-	_11%	-7%	-7%		-
Bynass		-0 /0		- 70	570	-12/0			-30%		-36%	-35%	-770	-37%	
Allied	-5%	-7%	-7%			-16%	_12%		-0070	-6%	-13%	-00%	_0%	-7%	
Crucible	-3 /0	-7 /0	-7 /0			-10%	-12/0	7%	-070	-0 /0	-1370	-9 %	-5%	-7 /0	
Harbor/Hiawatha		-0 /0					-12/0	-1 /0	22 /0			-070	-070	1070	
Lev/Park															
Ninemile/Rt/18			-5%	-7%	-5%		_8%		_9%						
Opend /Kirkpatrick			-070	-770 6%	-070		-070		12%		5%				
Harbor/Velasko	0%	18%		-070	-0 /0			12%	-12/0		25%	15%	12%		
	570	10 /0		1170	1370			12/0	10%		2370	1370	12 /0		
Total Gauged		0%		1%		12%			17%		10%	7%	Q0/	10%	
NonPoint Coursed		-9%		-4 %	E0/	-1270			-17 70		-10%	-1 70	-0 %	-1076	
				-0 %	-5%				-1170						
				-0 %	-0%				-1170						
		60/		-0 %	-5%	100/	100/	70/	-11%		60/	70/	60/	70/	
Total Industrial	40/	-0%		20/	40/	-10%	-12%	-1%	10%	20/	-0%	-1%	-0%	1%	
Total Municipal	-4%	-13%		3%	4%	-13%			-20%	-3%	-12%	-9%	-12%	-15%	
lotal External		-9%		-4%		-12%			-17%		-10%	-7%	-8%	-9%	
Total Inflow		-9%		-4%		-12%			-17%		-10%	-7%	-8%	-9%	
Total Outflow		-4%				-11%	-5%		-12%		-10%	-6%		-13%	
Retention		-12%				-15%					-11%	-9%	-17%		
Outlet2		-4%				-9%			-9%		-8%	-5%		-11%	
Outlet12		-4%				-11%	-5%		-12%		-10%	-6%		-13%	
South Epil.		-5%				-11%	-6%		-17%		-10%	-6%		-13%	
Concentration T	rends (% / yr)	Pe	eriod:	1993	to	2002								
	¥	D5				3N	2N	3N	THOP		z		U		6
<u>Term</u>	AL	BO	сA	CL	AA	HN	0 N	0N N	OR	τic	ТK	N T	то	ТР	TS
Metro	-3%	-7%		4%	5%	-12%			-16%	-2%	-11%	-7%	-7%	-11%	
Bypass		-7%			10%	-6%		18%	-15%		-8%	-8%	-14%	-9%	
Allied	-3%	-4%	-5%			-15%	-10%		-6%	-4%	-11%	-7%	-6%	-5%	13%
Crucible	2%	-5%					-11%	-7%	23%	2%		-5%	-4%	14%	
Harbor/Hiawatha		10%		5%	5%										
Ley/Park					5%										
Ninemile/Rt48	-1%		-3%	-5%	-3%		-6%								7%
Onond./Kirkpatrick				-5%	-5%				-11%		6%				
Harbor/Velasko		11%				-10%	-31%		-14%		16%	5%			
Onondaga/Dorwin		6%							-18%		4%				
Total Gauged	-1%	-7%	-2%	-3%		-11%			-15%		-9%	-6%	-6%	-7%	
NonPoint Gauged			-2%	-4%	-3%				-9%		2%				
Ungauged			-2%	-4%	-3%				-9%		2%				
Total NonPoint			-2%	-4%	-3%				-9%		2%				
Total Industrial	1%	-5%		3%		-9%	-11%	-6%	12%	1%	-5%	-6%	-5%	8%	
Total Municipal	-3%	-11%		4%	5%	-12%			-19%		-11%	-8%	-10%	-14%	
Total External	-1%	-7%	-2%	-3%	2.3	-11%			-15%		-9%	-5%	-6%	-7%	
Total Inflow	40/	70/	20/	20/		110/			150/		00/	E0/	60/	70/	
	-1%	-1 %	- ∠ %	-3%		-11%			-15%	40/	-9%	-5%	-0%	-1%	
	-1%					-9%			-10%	-1%	-8%	-4%	- ∠ %	-10%	
Outlet2		-3%		2%		-8%			-8%		-7%	-4%	-2%	-9%	
Outlet12	-1%					-9%			-10%	-1%	-8%	-4%	-2%	-10%	
South Epil.						-10%			-15%		-8%	-5%	-2%	-11%	

Trends Significant at p < .10 (2-tailed hypothesis), based upon linear regression of yearly values

Variable:	Chloride			Average for Yea			1998	thru	thru 2002		Season: Year			
						Perce	nt of Total	nflow		Drain.				
	Flow	Load	Std Error	Conc	RSE	Sampl	Flow	Load	Error	Area	Runoff	mtons/		
<u>Term</u>	<u>10^6 m3</u>	mtons	mtons	ppm	<u>%</u>	per yr	<u>%</u>	<u>%</u>	<u>%</u>	<u>km2</u>	<u>cm</u>	<u>km2</u>		
Metro Effluent	89.35	32356	2475	362	8%	29	21%	19%	31%					
Metro Bypass	2.19	1099	175	502	16%	5	1%	1%	0%					
East Flume	0.50	226	9	456	4%	28	0%	0%	0%					
Crucible	2.82	1122	21	398	2%	28	1%	1%	0%					
Harbor Brook	8.56	2318	163	271	7%	30	2%	1%	0%	29.3	29.2	79.1		
Ley Creek	34.40	10277	1028	299	10%	31	8%	6%	5%	77.5	44.4	132.6		
Ninemile Creek	124.13	49272	1641	397	3%	29	29%	28%	14%	298.1	41.6	165.3		
Onondaga Creek	142.49	69958	2954	491	4%	31	33%	40%	45%	285.1	50.0	245.4		
Nonpoint Gauged	309.58	131824	3537	426	3%	121	72%	76%	64%	690.0	44.9	191.0		
Nonpoint Ungauged	16.61	7075	974	426	14%	0	4%	4%	5%	37.0	44.9	191.0		
NonPoint Total	326.19	138899	3668	426	3%	121	76%	80%	69%	727.0	44.9	191.0		
Industrial	3.32	1349	23	407	2%	56	1%	1%	0%					
Municipal	91.54	33455	2481	365	7%	34	21%	19%	31%					
Total External	421.05	173703	4429	413	3%	211	98%	100%	100%	727.0	57.9	238.9		
Precipitation	10.65	11	1	1	9%	0	2%	0%	0%	11.7	91.0	0.9		
Total Inflow	431.70	173713	4429	402	3%	211	100%	100%	100%	738.7	58.4	235.1		
Evaporation	8.86						2%			11.7	75.7			
Outflow	422.84	185917	2531	440	1%		98%	107%	33%	738.7	57.2	251.7		
Retention	0.00	-12204	5101		42%		0%	-7%						
Alternative Estimates of La	ake Output													
Outlet 12 Feet	422.84	185917	2531	440	1%	26	98%	107%	33%	738.7	57.2	251.7		
Outlet 2 Feet	422.84	156991	3576	371	2%	26	98%	90%	65%	738.7	57.2	212.5		
Lake Epil	422.84	180171	2174	426	1%	21	98%	104%	24%	738.7	57.2	243.9		
Upstream/Downstream Co	ontrast- Harbor	Brook												
Upstream - Velasko	8.03	1772	69	221	4%	28	2%	1%	0%	25.9	31.0	68.4		
Downstream - Hiawatha	8.56	2318	163	271	7%	30	2%	1%	0%	29.3	29.2	79.1		
Local Inflow	0.53	546	177	1037	32%		0%	0%	0%	3.4	15.6	162.0		
Upstream/Downstream Co	ontrast - Onono	daga Cree	k											
Upstream - Dorwin	109.29	13337	544	122	4%	31	25%	8%	2%	229.4	47.6	58.1		
Downstream - Kirkpatrick	142.49	69958	2954	491	4%	31	33%	40%	45%	285.1	50.0	245.4		
Local Inflow	33.20	56620	3004	1705	5%		8%	33%	46%	55.7	59.6	1016.0		
Lake Overflow Rate	36.14 r	n/yr	Calib. Settling	g Rate	-2.4 m/	/yr F	RSE % = Re	lative Std. E	rror of Load	I & Inflow C	onc. Estima	ates		
Lake Residence Time	0.30 y	/ears	Calib. Retent	ion Coef.	-7%	Error % = Percent of Variance in Total Inflow Load Esti						е		

Table 2: Chloride Balance for 1998-2002

Variable:	Total Phosphorus			Ave	erage for	Years:	1998	thru	2002	Season: Year			
						Perce	Percent of Total Inflow			Drain.		Export	
	Flow	Load	Std Error	Conc	RSE	Sampl	Flow	Load	Error	Area	Runoff	kg/	
<u>Term</u>	<u>10^6 m3</u>	kg	kg	ppb	<u>%</u>	per yr	<u>%</u>	<u>%</u>	<u>%</u>	<u>km2</u>	<u>cm</u>	<u>km2</u>	
Metro Effluent	89.35	28745	281	322	1%	365	21%	47%	2%				
Metro Bypass	2.19	2568	77	1174	3%	40	1%	4%	0%				
East Flume	0.50	95	6	191	6%	28	0%	0%	0%				
Crucible	2.82	373	10	132	3%	28	1%	1%	0%				
Harbor Brook	8.56	704	118	82	17%	30	2%	1%	0%	29.3	29.2	24.0	
Ley Creek	34.40	3965	330	115	8%	30	8%	6%	3%	77.5	44.4	51.2	
Ninemile Creek	124.13	9149	963	74	11%	29	29%	15%	24%	298.1	41.6	30.7	
Onondaga Creek	142.49	13688	1655	96	12%	31	33%	22%	70%	285.1	50.0	48.0	
Nonpoint Gauged	309.58	27506	1947	89	7%	120	72%	45%	96%	690.0	44.9	39.9	
Nonpoint Ungauged	16.61	1476	229	89	15%	0	4%	2%	1%	37.0	44.9	39.9	
NonPoint Total	326.19	28982	1960	89	7%	120	76%	47%	98%	727.0	44.9	39.9	
Industrial	3.32	467	12	141	2%	55	1%	1%	0%				
Municipal	91.54	31313	291	342	1%	405	21%	51%	2%				
Total External	421.05	60762	1982	144	3%	581	98%	99%	100%	727.0	57.9	83.6	
Precipitation	10.65	320	29	30	9%	0	2%	1%	0%	11.7	91.0	27.3	
Total Inflow	431.70	61081	1982	141	3%	581	100%	100%	100%	738.7	58.4	82.7	
Evaporation	8.86						2%			11.7	75.7		
Outflow	422.84	34216	1483	81	4%		98%	56%	56%	738.7	57.2	46.3	
Retention	0.00	26865	2475		9%		0%	44%					
Alternative Estimates of La	ake Output												
Outlet 12 Feet	422.84	34216	1483	81	4%	26	98%	56%	56%	738.7	57.2	46.3	
Outlet 2 Feet	422.84	32232	1313	76	4%	26	98%	53%	44%	738.7	57.2	43.6	
Lake Epil	422.84	31890	1368	75	4%	22	98%	52%	48%	738.7	57.2	43.2	
Upstream/Downstream Co	ontrast- Harbor	Brook											
Upstream - Velasko	8.03	365	57	45	16%	28	2%	1%	0%	25.9	31.0	14.1	
Downstream - Hiawatha	8.56	704	118	82	17%	30	2%	1%	0%	29.3	29.2	24.0	
Local Inflow	0.53	339	131	643	39%		0%	1%	0%	3.4	15.6	100.5	
Upstream/Downstream Co	ontrast - Onond	aga Creek	c										
Upstream - Dorwin	109.29	7925	768	73	10%	31	25%	13%	15%	229.4	47.6	34.5	
Downstream - Kirkpatrick	142.49	13688	1655	96	12%	31	33%	22%	70%	285.1	50.0	48.0	
Local Inflow	33.20	5763	1824	174	32%		8%	9%	85%	55.7	59.6	103.4	
Lake Overflow Rate	36.14 m	ı/yr	Calib. Settling	g Rate	28.4 m	/yr F	RSE % = Re	lative Std. E	Fror of Load	I & Inflow C	onc. Estima	ates	
Lake Residence Time	0.30 y	ears	Calib. Retent	on Coef.	44%	E	Error % = Pe	ercent of Var	iance in Tot	tal Inflow Lo	oad Estimate	е	

Table 3: Total Phosphorus Balance for 1998-2002

Variable:	Total Nitrogen			Ave	Average for Year			thru	2002	Season: Year			
						Perce	nt of Total	Inflow		Drain.		Export	
	Flow	Load	Std Error	Conc	RSE	Sampl	Flow	Load	Error	Area	Runoff	kg/	
<u>Term</u>	<u>10^6 m3</u>	kg	<u>kg</u>	ppb	<u>%</u>	per yr	<u>%</u>	<u>%</u>	<u>%</u>	<u>km2</u>	<u>cm</u>	km2	
Metro Effluent	89.35	1106076	22317	12379	2%	50	21%	65%	74%				
Metro Bypass	2.19	28838	1589	13179	6%	5	1%	2%	0%				
East Flume	0.50	3342	76	6735	2%	28	0%	0%	0%				
Crucible	2.82	5720	274	2029	5%	28	1%	0%	0%				
Harbor Brook	8.56	18201	717	2126	4%	28	2%	1%	0%	29.3	29.2	621.4	
Ley Creek	34.40	50311	1509	1463	3%	27	8%	3%	0%	77.5	44.4	649.1	
Ninemile Creek	124.13	219857	6926	1771	3%	27	29%	13%	7%	298.1	41.6	737.5	
Onondaga Creek	142.49	230965	9976	1621	4%	28	33%	13%	15%	285.1	50.0	810.0	
Nonpoint Gauged	309.58	519334	12259	1678	2%	110	72%	30%	22%	690.0	44.9	752.6	
Nonpoint Ungauged	16.61	27871	3846	1678	14%	0	4%	2%	2%	37.0	44.9	752.6	
NonPoint Total	326.19	547206	12848	1678	2%	110	76%	32%	25%	727.0	44.9	752.6	
Industrial	3.32	9062	284	2733	3%	55	1%	1%	0%				
Municipal	91.54	1134914	22374	12398	2%	55	21%	66%	75%				
Total External	421.05	1691181	25802	4017	2%	220	98%	99%	100%	727.0	57.9	2326.1	
Precipitation	10.65	20237	1817	1900	9%	0	2%	1%	0%	11.7	91.0	1729.6	
Total Inflow	431.70	1711418	25866	3964	2%	220	100%	100%	100%	738.7	58.4	2316.6	
Evaporation	8.86						2%			11.7	75.7		
Outflow	422.84	1267880	20938	2998	2%		98%	74%	66%	738.7	57.2	1716.3	
Retention	0.00	443538	33278		8%		0%	26%					
Alternative Estimates of L	ake Output												
Outlet 12 Feet	422.84	1267880	20938	2998	2%	26	98%	74%	66%	738.7	57.2	1716.3	
Outlet 2 Feet	422.84	1130010	23100	2672	2%	26	98%	66%	80%	738.7	57.2	1529.6	
Lake Epil	422.84	1287685	16606	3045	1%	23	98%	75%	41%	738.7	57.2	1743.1	
Upstream/Downstream C	ontrast- Harb	or Brook											
Upstream - Velasko	8.03	17468	903	2174	5%	28	2%	1%	0%	25.9	31.0	673.9	
Downstream - Hiawatha	8.56	18201	717	2126	4%	28	2%	1%	0%	29.3	29.2	621.4	
Local Inflow	0.53	733	1153	1392	157%		0%	0%	0%	3.4	15.6	217.6	
Upstream/Downstream C	ontrast - Ono	ndaga Cre	ek										
Upstream - Dorwin	109.29	171774	8278	1572	5%	27	25%	10%	10%	229.4	47.6	748.8	
Downstream - Kirkpatrick	142.49	230965	9976	1621	4%	28	33%	13%	15%	285.1	50.0	810.0	
Local Inflow	33.20	59191	12963	1783	22%		8%	3%	25%	55.7	59.6	1062.1	
Lake Overflow Rate	36.14	m/yr	Calib. Settlin	g Rate	12.6 m	/yr l	RSE % = R	elative Std.	Error of Loa	d & Inflow	Conc. Estin	nates	
Lake Residence Time	0.30	years	Calib. Reten	tion Coef.	26%		Error % = P	ercent of Va	riance in To	otal Inflow I	oad Estima	ate	

Table 5: Total Nitrogen Balance for 1998-2002

Variable:	Soluble R	eactive	Phosphorus	Av	erage for	Years:	1998	thru	2002	Season: Year			
							Percent o	f Total Inflo	w	Drain.	Drain. Ex		
	Flow	Load	Std Error	Conc	RSE	Sampl	Flow	Load	Error	Area	Runoff	kg /	
<u>Term</u>	<u>10^6 m3</u>	kg	<u>kg</u>	ppb	<u>%</u>	<u>per yr</u>	<u>%</u>	<u>%</u>	<u>%</u>	<u>km2</u>	<u>cm</u>	<u>km2</u>	
Metro Effluent	89.35	5912	491	66	8%	28	21%	59%	72%				
Metro Bypass	2.19	395	209	180	53%	5	1%	4%	13%				
East Flume	0.50	46	5	93	12%	28	0%	0%	0%				
Crucible	2.82	149	5	53	3%	28	1%	1%	0%				
Harbor Brook	8.56	181	24	21	13%	30	2%	2%	0%	29.3	29.2	6.2	
Ley Creek	34.40	603	37	18	6%	30	8%	6%	0%	77.5	44.4	7.8	
Ninemile Creek	124.13	1073	136	9	13%	29	29%	11%	6%	298.1	41.6	3.6	
Onondaga Creek	142.49	1340	166	9	12%	31	33%	13%	8%	285.1	50.0	4.7	
Nonpoint Gauged	309.58	3197	219	10	7%	120	72%	32%	14%	690.0	44.9	4.6	
Nonpoint Ungauged	16.61	172	26	10	15%	0	4%	2%	0%	37.0	44.9	4.6	
NonPoint Total	326.19	3369	220	10	7%	120	76%	34%	15%	727.0	44.9	4.6	
Industrial	3.32	195	7	59	4%	55	1%	2%	0%				
Municipal	91.54	6307	534	69	8%	32	21%	63%	85%				
Total External	421.05	9871	577	23	6%	207	98%	98%	100%	727.0	57.9	13.6	
Precipitation	10.65	160	14	15	9%	0	2%	2%	0%	11.7	91.0	13.7	
Total Inflow	431.70	10030	578	23	6%	207	100%	100%	100%	738.7	58.4	13.6	
Evaporation	8.86						2%			11.7	75.7		
Outflow	422.84	17236	1538	41	9%		98%	172%	709%	738.7	57.2	23.3	
Retention	0.00	-7206	1643		23%		0%	-72%					
Alternative Estimates of I	Lake Output												
Outlet 12 Feet	422.84	17236	1538	41	9%	26	98%	172%	709%	738.7	57.2	23.3	
Outlet 2 Feet	422.84	14361	1222	34	9%	26	98%	143%	448%	738.7	57.2	19.4	
Lake Epil	422.84	11499	1334	27	12%	22	98%	115%	534%	738.7	57.2	15.6	
Upstream/Downstream C	Contrast- Hart	oor Brook											
Upstream - Velasko	8.03	64	7	8	11%	28	2%	1%	0%	25.9	31.0	2.5	
Downstream - Hiawatha	8.56	181	24	21	13%	30	2%	2%	0%	29.3	29.2	6.2	
Local Inflow	0.53	117	25	222	21%		0%	1%	0%	3.4	15.6	34.7	
Upstream/Downstream C	Contrast - Onc	ondaga Cr	eek										
Upstream - Dorwin	109.29	563	80	5	14%	31	25%	6%	2%	229.4	47.6	2.5	
Downstream - Kirkpatrick	4142.49	1340	166	9	12%	31	33%	13%	8%	285.1	50.0	4.7	
Local Inflow	33.20	777	184	23	24%		8%	8%	10%	55.7	59.6	13.9	
Lake Overflow Rate	36.14 m	n/yr	Calib. Settling F	Rate	-15.1 m	/yr l	RSE % = Re	elative Std. E	Error of Loa	d & Inflow (Conc. Estim	ates	
Lake Residence Time	0.30 y	ears	Calib. Retention	n Coef.	-72%	I	Error % = Pe	ercent of Va	riance in To	otal Inflow L	oad Estima	te	

Table 4: Soluble Reactive P Balance for 1998-2002

Variable:	Ammonia Nitrogen			Ave	Average for Years:			thru	2002	Season: Year			
							Percent of	f Total Inflo	w	Drain.		Export	
	Flow	Load	Std Error	Conc	RSE	Sampl	Flow	Load	Error	Area	Runoff	kg/	
<u>Term</u>	<u>10^6 m3</u>	kg	<u>kg</u>	<u>ppb</u>	<u>%</u>	per yr	<u>%</u>	<u>%</u>	<u>%</u>	<u>km2</u>	<u>cm</u>	<u>km2</u>	
Metro Effluent	89.35	541605	9741	6061	2%	365	21%	85%	86%				
Metro Bypass	2.19	15847	838	7242	5%	40	1%	2%	1%				
East Flume	0.50	527	26	1063	5%	28	0%	0%	0%				
Crucible	2.82	478	18	169	4%	28	1%	0%	0%				
Harbor Brook	8.56	1368	136	160	10%	28	2%	0%	0%	29.3	29.2	46.7	
Ley Creek	34.40	13543	614	394	5%	27	8%	2%	0%	77.5	44.4	174.7	
Ninemile Creek	124.13	41393	3521	333	9%	27	29%	6%	11%	298.1	41.6	138.9	
Onondaga Creek	142.49	18643	1020	131	5%	28	33%	3%	1%	285.1	50.0	65.4	
Nonpoint Gauged	309.58	74946	3719	242	5%	110	72%	12%	13%	690.0	44.9	108.6	
Nonpoint Ungauged	16.61	4022	586	242	15%	0	4%	1%	0%	37.0	44.9	108.6	
NonPoint Total	326.19	78968	3765	242	5%	110	76%	12%	13%	727.0	44.9	108.6	
Industrial	3.32	1005	32	303	3%	55	1%	0%	0%				
Municipal	91.54	557452	9777	6090	2%	404	21%	87%	87%				
Total External	421.05	637425	10477	1514	2%	570	98%	100%	100%	727.0	57.9	876.7	
Precipitation	10.65	1065	96	100	9%	0	2%	0%	0%	11.7	91.0	91.0	
Total Inflow	431.70	638490	10478	1479	2%	570	100%	100%	100%	738.7	58.4	864.3	
Evaporation	8.86						2%			11.7	75.7		
Outflow	422.84	450957	12721	1066	3%		98%	71%	147%	738.7	57.2	610.4	
Retention	0.00	187533	16480		9%		0%	29%					
Alternative Estimates of La	ke Output												
Outlet 12 Feet	422.84	450957	12721	1066	3%	26	98%	71%	147%	738.7	57.2	610.4	
Outlet 2 Feet	422.84	386222	13761	913	4%	26	98%	60%	173%	738.7	57.2	522.8	
Lake Epil	422.84	460654	15070	1089	3%	23	98%	72%	207%	738.7	57.2	623.6	
Upstream/Downstream Cor	ntrast- Harbor	Brook											
Upstream - Velasko	8.03	681	37	85	5%	28	2%	0%	0%	25.9	31.0	26.3	
Downstream - Hiawatha	8.56	1368	136	160	10%	28	2%	0%	0%	29.3	29.2	46.7	
Local Inflow	0.53	687	141	1305	20%		0%	0%	0%	3.4	15.6	203.9	
Upstream/Downstream Con	ntrast - Ononc	laga Creel	ĸ										
Upstream - Dorwin	109.29	9069	412	83	5%	27	25%	1%	0%	229.4	47.6	39.5	
Downstream - Kirkpatrick	142.49	18643	1020	131	5%	28	33%	3%	1%	285.1	50.0	65.4	
Local Inflow	33.20	9574	1100	288	11%		8%	1%	1%	55.7	59.6	171.8	
Lake Overflow Rate	36.14 r	n/yr	Calib. Settling	g Rate	15.0 m/y	vr I	RSE % = Re	elative Std. E	Error of Loa	d & Inflow (Conc. Estim	ates	
Lake Residence Time	0.30 y	/ears	Calib. Retent	ion Coef.	29%		Error % = Percent of Variance in Total Inflow Load Estimate						

Table 6: Ammonia Nitrogen Balance for 1998-2002

Variable:	Total Phosphorus			Ave	Average for Years:			thru	2002	Season:		MaySept	
							Percent o	f Total Inflov	v	Drain.		Export	
	Flow	Load	Std Error	Conc	RSE	Sampl	Flow	Load	Error	Area	Runoff	kg/	
<u>Term</u>	<u>10^6 m3</u>	kg	kg	ppb	<u>%</u>	per yr	<u>%</u>	<u>%</u>	<u>%</u>	<u>km2</u>	cm	<u>km2</u>	
Metro Effluent	34.81	11324	148	325	1%	153	25 <mark>%</mark>	53%	4%				
Metro Bypass	0.69	813	243	1182	30%	14	0%	4%	12%				
East Flume	0.16	27	1	168	5%	11	0%	0%	0%				
Crucible	1.11	166	6	149	4%	11	1%	1%	0%				
Harbor Brook	2.95	214	31	72	14%	12	2%	1%	0%	29.3	10.1	7.3	
Lev Creek	11.26	1531	107	136	7%	13	8%	7%	2%	77.5	14.5	19.8	
Ninemile Creek	38.32	2833	203	74	7%	12	27%	13%	8%	298.1	12.9	9.5	
Onondaga Creek	41.08	3713	593	90	16%	13	29%	18%	71%	285.1	14.4	13.0	
Nonpoint Gauged	93.61	8292	636	89	8%	51	67%	39%	82%	690.0	13.6	12.0	
Nonpoint Ungauged	5.02	445	74	89	17%	0	4%	2%	1%	37.0	13.6	12.0	
NonPoint Total	98.64	8737	641	89	7%	51	70%	41%	83%	727.0	13.6	12.0	
Industrial	1.27	193	6	151	3%	22	1%	1%	0%				
Municipal	35.50	12137	285	342	2%	167	25%	57%	16%				
Total External	135.41	21067	701	156	3%	240	96%	99%	100%	727.0	18.6	29.0	
Precipitation	4.92	148	13	30	9%	0	4%	1%	0%	11.7	42.1	12.6	
Total Inflow	140.33	21215	701	151	3%	240	100%	100%	100%	738.7	19.0	28.7	
Evaporation	6.18						4%			11.7	52.8		
Outflow	134.15	6365	194	47	3%		96%	30%	8%	738.7	18.2	8.6	
Retention	0.00	14850	727		5%		0%	70%					
Alternative Estimates of L	_ake Output												
Outlet 12 Feet	134.15	6365	194	47	3%	11	96%	30%	8%	738.7	18.2	8.6	
Outlet 2 Feet	134.15	7341	373	55	5%	11	96%	35%	28%	738.7	18.2	9.9	
Lake Epil	134.15	6559	247	49	4%	11	96%	31%	12%	738.7	18.2	8.9	
Upstream/Downstream C	Contrast- Harbo	r Brook											
Upstream - Velasko	2.70	74	11	28	15%	11	2%	0%	0%	25.9	10.4	2.9	
Downstream - Hiawatha	2.95	214	31	72	14%	12	2%	1%	0%	29.3	10.1	7.3	
Local Inflow	0.25	139	33	559	24%		0%	1%	0%	3.4	7.4	41.4	
Upstream/Downstream C	Contrast - Onon	daga Cre	ek										
Upstream - Dorwin	28.66	2118	233	74	11%	13	20%	10%	11%	229.4	12.5	9.2	
Downstream - Kirkpatrick	41.08	3713	593	90	16%	13	29%	18%	71%	285.1	14.4	13.0	
Local Inflow	12.43	1595	637	128	40%		9%	8%	83%	55.7	22.3	28.6	
Lake Overflow Rate	27.37 m	n/yr	Calib. Settling	g Rate	63.9 m	n/yr	RSE % = Re	elative Std. E	ror of Loa	d & Inflow (Conc. Estir	nates	
Lake Residence Time	0.40 y	ears	Calib. Retent	ion Coef.	70%		Error % = P	ercent of Vari	ance in To	tal Inflow L	oad Estimation	ate	

Table 7: Total Phosphorus Balance for May-September, 1998-2002

Variable:	Soluble Re	eactive	Phosphorus	Av	erage for `	Years:	1998	thru	2002	Ś	Season:	MaySept
							Percent o	of Total Inflo	w	Drain.		Export
	Flow	Load	Std Error	Conc	RSE	Sampl	Flow	Load	Error	Area	Runoff	kg /
<u>Term</u>	<u>10^6 m3</u>	kg	<u>kg</u>	ppb	<u>%</u>	per yr	<u>%</u>	<u>%</u>	<u>%</u>	<u>km2</u>	<u>cm</u>	<u>km2</u>
Metro Effluent	34.81	3442	310	99	9%	11	25%	72%	69%			
Metro Bypass	0.69	54	188	79	344%	1	0%	1%	25%			
East Flume	0.16	11	1	71	13%	11	0%	0%	0%			
Crucible	1.11	61	3	55	5%	11	1%	1%	0%			
Harbor Brook	2.95	64	6	22	9%	12	2%	1%	0%	29.3	10.1	2.2
Ley Creek	11.26	232	16	21	7%	13	8%	5%	0%	77.5	14.5	3.0
Ninemile Creek	38.32	344	44	9	13%	12	27%	7%	1%	298.1	12.9	1.2
Onondaga Creek	41.08	453	78	11	17%	13	29%	9%	4%	285.1	14.4	1.6
Nonpoint Gauged	93.61	1094	91	12	8%	51	67%	23%	6%	690.0	13.6	1.6
Nonpoint Ungauged	5.02	59	10	12	17%	0	4%	1%	0%	37.0	13.6	1.6
NonPoint Total	98.64	1152	92	12	8%	51	70%	24%	6%	727.0	13.6	1.6
Industrial	1.27	73	4	57	5%	22	1%	2%	0%			
Municipal	35.50	3497	362	98	10%	13	25%	73%	94%			
Total External	135.41	4721	373	35	8%	85	96%	98%	100%	727.0	18.6	6.5
Precipitation	4.92	74	7	15	9%	0	4%	2%	0%	11.7	42.1	6.3
Total Inflow	140.33	4795	373	34	8%	85	100%	100%	100%	738.7	19.0	6.5
Evaporation	6.18						4%			11.7	52.8	
Outflow	134.15	935	137	7	15%		96%	19%	14%	738.7	18.2	1.3
Retention	0.00	3860	398		10%		0%	81%				
Alternative Estimates of L	ake Output											
Outlet 12 Feet	134.15	935	137	7	15%	11	96%	19%	14%	738.7	18.2	1.3
Outlet 2 Feet	134.15	1429	143	11	10%	11	96%	30%	15%	738.7	18.2	1.9
Lake Epil	134.15	625	107	5	17%	11	96%	13%	8%	738.7	18.2	0.8
Upstream/Downstream C	ontrast- Harbo	r Brook										
Upstream - Velasko	2.70	16	3	6	19%	11	2%	0%	0%	25.9	10.4	0.6
Downstream - Hiawatha	2.95	64	6	22	9%	12	2%	1%	0%	29.3	10.1	2.2
Local Inflow	0.25	48	7	192	14%		0%	1%	0%	3.4	7.4	14.2
Upstream/Downstream C	ontrast - Onon	daga Cre	ek									
Upstream - Dorwin	28.66	142	18	5	12%	13	20%	3%	0%	229.4	12.5	0.6
Downstream - Kirkpatrick	41.08	453	78	11	17%	13	29%	9%	4%	285.1	14.4	1.6
Local Inflow	12.43	311	80	25	26%		9%	6%	5%	55.7	22.3	5.6
Lake Overflow Rate	27.37 m	/yr	Calib. Settling F	Rate	113.0 m/	yr	RSE % = Re	elative Std. E	Error of Loa	d & Inflow	Conc. Estir	nates
Lake Residence Time	0.40 ye	ears	Calib. Retentior	ו Coef.	81%		Error % = P	ercent of Va	riance in To	otal Inflow L	oad Estimation	ate

Table 8: Soluble Reactive P Balance for May-September, 1998-2002