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Consideration of Variability and Uncertainty in Phosphorus 
Total Maximum Daily Loads for Lakes 

William W. Walker Jr.1 

Abstract: A simplified framework for considering variability and unccrtainty in dcveloping lake phosphorus total maximum daily loads 
(TMDLs) is demonstrated. Explicit consideration of these factors can increase the probability that TMDL implementation will meet a 
defined water quality goal at an acceptable frequency. Although a lake goal is typically expressed as a seasonal or yearly average 
phosphorus concentration, effects of temporal variations can be captured by correlating average phosphorus concentrations with the 
frequency of algal blooms (defined by extreme values of chlorophyll a) or the frequency of exceeding numeric water quality standards that 
are directly linked to algal blooms, such as hydrogen ion concentration or transparency. The margin of safety (MOS) required to achieve 
the lake goal at a defined frequency and with a defined confidence level can be estimated by including stochastic terms in the phosphorus 
balance equation to reflect variability and uncertainty. Given limitations in the data and models typically used in developing TMDLs, the 
cost of the MOS, expressed in terms of percent of the total allocated load or safety factors in the design of control measures, can be large. 
The MOS would be expected to increase with the percent load reduction required under the TMDL, as the forecast loads become 
increasingly dependent on assumptions regarding the performance of best management practices or other measures for reducing loads. The 
magnitude and cost of the MOS can be reduced by implementing TMDLs in an iterative fashion with ongoing data collection, and model 
refinement to reduce uncertainties associated with forecasting the performance of phosphorus load controls and lake responses. 

001: 10.1 061/(ASCE)0733-9496(2003) 129:4(337) 

CE Database subject headings: Phosphorus; Water quality; Lakes. 

Introduction 

Federal guidelines (U.S. EPA 1999) require consideration of vari­
ability and uncertainty in the development of total maximum 
daily loads (TMDLs) to meet water quality standards in impaired 
water bodies. Considering these factors is necessary to ensure that 
TMDL implementation will meet objectives with reasonably high 
probabilities of success and in a reasonably cost-effective manner. 
The requirements can be met using a variety of implicit or explicit 
approaches. Implicit approaches embed a margin of safety (MOS) 
into one or more conservative assumptions in supporting analysis 
(e.g., estimation of ungauged loads or model coefficients). If the 
MOS is not quantified, there is some risk that the resulting load 
control programs would be over-designed (resulting in unneces­
sary regulation and expense) or underdesigned (having a low 
probability of meeting objectives). If the MOS is explicitly quan­
tified, control measures will generally be overdesigned suffi­
ciently to achieve the specified goal with a specified confidence 
level. This paper demonstrates an approach that explicitly quan­
tifies the MOS in the context of a lake phosphorus TMDL analy­
sis. While the approach is demonstrated with a relatively simple 
lake phosphorus loading model, it can be generalized to other 
types of water bodies, water quality components, and model for-
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mulations with the substitution of appropriate equations and pa­
rameter values (Borsuk et al. 2002). 

The MOS can be partitioned into components that reflect vari­
ability and uncertainty. Distinctions between variability and un­
certainty are often ignored and/or misunderstood. Variability re­
fers to temporal and/or spatial variations in water quality 
conditions, as they relate to the management goal. The amount of 
variability determines the frequency at which a given numeric 
water quality standard will be achieved under a given loading 
regime. Variability is typically an inherent characteristic of the 
system that is insensitive to management measures. "Uncer­
tainty" refers to random prediction error resulting from limita­
tions in the data and models used to formulate the lake phos­
phorus balance, trophic response model, and/or the performance 
of measures to achieve the allocated loads. The level of uncer­
tainty determines the probability of achieving the standard at a 
specified frequency under a given load allocation. Unlike variabil­
ity, uncertainty can be reduced in many cases by collecting addi­
tional data and improving forecast models under an adaptive man­
agement framework. 

Guidelines set forth by regulatory agencies may require that 
TMDLs be designed to achieve compliance with the relevant 
water quality standard at a specified frequency (e.g., < 10% of 
values exceeding the standard). In these situations, it is important 
to be clear about the averaging time scale and about whether the 
intent is to account for variability in the system or to provide an 
implicit margin of safety. In the fonner case, the maximum ex­
cursion frequency is essentially part of the goal and a conserva­
tive design would be needed to provide a margin of safety that 
accounts for uncertainty (e.g., design for 5 versus 10% excursion 
frequency, depending upon the level of uncertainty in the TMDL 
derivation). In the latter case, a conservative design may not be 
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required, since there is already an unspecified margin of safety 
implicit in the target. This would imply that a final outcome with 
an excursion frequency higher than 10% would be '·acceptable." 
This approach is not recommended because the actual goal is not 
clearly specified. The methodology described below demonstrates 
how these distinctions between variability and uncertainty can be 
made explicitly. 

Phosphorus Goal 

The basis for establishing a phosphorus TMDL is the causal path­
way linking phosphorus loading, excessive algal growth, and im­
pairment of water uses. In some cases. excessive algal growth 
may lead to violations of numeric water quality standards for 
chlorophyll a. hydrogen ion concentration (pH). dissolved oxy­
gen, transparency, and/or free ammonia. The U.S. EPA (2000) 
provides guidance for selecting an appropriate P criterion on a 
regional basis. If sufficient data are available, regional or lake­
specific criteria can be developed based upon correlations be­
tween lake phosphorus concentrations and various measures of 
use impairment (such as aesthetic appearance) or violations of 
numeric water quality standards (Heiskary and Walker 1988; Ha­
vens and Walker 2002). Depending upon lake dynamics, Lake P 
criteria are typically averaged over an appropriate season (annual, 
spring overturn, or summer) and depth interval (epilimnetic, 
volume-weighted-mean). Spring-overturn or summer-average ep­
ilimnetic concentrations are typically used because they are most 
directly correlated with algal blooms and can be predicted using 
relatively simple empirical phosphorus loading models of the type 
demonstrated below. 

One consideration is that P criteria expressed as summer or 
yearly averages do not directly address requirements to consider 
seasonal variations and critical conditions under TMDL guide­
lines (U.S. EPA 1999). Eutrophication-related impairment of 
water uses and violations of water quality standards are typically 
episodic in nature because of the episodic nature of algal blooms. 
One approach to addreSSing this issue in deriving a phosphorus 
goal is to develop lake-specific or regional correlations between 
average phosphorus concentrations and the frequency of algal 
blooms or violations of water quality standards, as demonstrated 
in Figs. 1 and 2. These types of correlations reflect temporal and, 
in some cases, spatial variability in the biological response to a 
given average phosphorus regime. Typically, they also exhibit a 
threshold response pattern that provides a logical focal point for 
selecting a P criterion. 

Correlations between average summer phosphorus concentra­
tion and the frequency of algal blooms linked to taste-and-odor 
episodes were used as a partial basis for setting a phosphorus goal 
of 25 ppb for Vadnais Lake, Minn. (Fig. 1, Walker et al. 1989; 
Walker 2000a). Correlations between the frequency of spatially 
distributed samples with a pH exceeding 9.0 (applicable water 
quality standard) and lake-average P concentrations were used as 
a partial basis for developing a TMDL for Upper Klamath Lake, 
Oregon (Fig. 2, Walker 2001a). The marked pH response to algal 
growth in this system reflects an extremely low-buffering capac­
ity. Since the pH excursion frequencies are computed from indi­
vidual samples collected on different dates within each year and 
at different locations and depths, the correlation captures both 
spatial and temporal variability in the system. 

Total Maximum Daily Load Equation-Side One 

A variety of modeling approaches may be taken to represent the 
relationship between external phosphorus loads and in-lake con-

centrations. In the example demonstrated below, the TMDL is 
derived from a steady-state mass balance that equates the long­
term-average external P load to the lake assimilative capacity, or 
the maximum external load that is consistent with meeting the 
defined lake concentration goal. The assimilative capacity is equal 
to the sum of the flushing and net retention terms of the lake 
phosphorus budget when Lake P concentration equals the defined 
target: 

TMDL= QP* + UAP* (I) 

where TMDL=total maximum daily load (kg/year); Q=long­
term-average lake outflow (hm3/year); P*=Lake P target 
(mg/m3

); U=effective setting velocity (m/year); and A=lake sur­
face area (km2

). 

Time scales longer than one day are typically relevant in for­
mulating lake phosphorus balances. As formulated here, the 
TMDL refers to long-Ierm-average (multiyear) load. Phosphorus 
TMDLs for Lake Okeechobee, Fla. (FDEP 2001) and Upper Kla­
math Lake, Oregon (ODEQE 2002) are both expressed as long­
term-average loads. The "maximum" descriptor refers to the 
maximum long-term-average load that is consistent with meeting 
the lake goal, not to the extreme value of a time series. The 
"daily" descriptor in TMDL is included for consistency with ter­
minology in federal guidelines (U.S. EPA 1999). While alterna­
tive time scales and interpretations the "TMDL" term mioht be 
. e 
mvoked, the formulation used here is most readily applicable for 
use with lake phosphorus loading models. The assumption is 
made that, regardless of how "TMDL" is interpreted, alternative 
definitions of TMDL would be acceptable, as long as the analysis 
produces a load allocation that is consistent with achieving water 
quality standards. 

A variety of empirical models can be used to represent the net 
retention term (Vollenweider 1976; NALMS 1990; Walker 1999). 
In this example, retention is assumed to be proportional to con­
centration and lake surface area. The lake is assumed to be well­
mixed horizontally, so that the outflow concentration and average 
lake concentrations are approximately equal. Preliminary esti­
mates of settling velocity can be derived from the literature or 
regional lake data (Vollenweider 1969; Chapra 1975) and subse­
quently calibrated to lake-specific data. The selected averaging 
scheme for the Lake P criterion may influence the calibrated set­
tling velocity and average outflow rate used in the mass balance. 

If sufficient data and modeling resources are available, more 
complex deterministic models can be used to simulate internal 
lake dynamics on finer spatial and temporal scales. It is difficult 
to generally prescribe a modeling approach, since that choice ul­
timately depends upon the judgment of the analyst in view of the 
information and problem at hand. The credibility of the analysis 
may be enhanced if the model is able to explain temporal (Walker 
and Havens 2003) and/or spatial variations (Walker 1999) in a 
deterministic sense, even if the goal is expressed as a long-term or 
seasonal average. Deterministic simulation of year-to-year varia­
tions may be desirable in situations where there is a long-term 
trend in the data (Walker 2000b, 2001b). Similarly, yearly simu­
lations may also provide a basis for .lnodel testing (e.g., compar­
ing observed data with predictions in years that are not used for 
calibration purposes). Extension of the simple one-layer model to 
include sediment and/or hypolimnetic compartments may be ap­
propriate in situations where estimates of internal recycling 
and/or response times are of interest (Walker 2000b, 200la). Cau­
tion should be exercised, however, in extending model complex­
ity beyond the level that is supported by the site-specific data 
available for calibration and testing. 
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Fig. 1. Bloom frequency versus total P-Vadnais Chain of Lakes, Minn, Plots-{)bserved and predicted percent of samples with chlorophyll a 
values exceeding each of three bloom criteria; symbols-observed yearly values from two lakes; solid lines-predicted frequencies using listed 
equlati()Ds; dashed Iines-25 for Vadnais Lake to control taste and odor (Walker 

Total Maximum Daily Load Equation-8ide Two 

The other side of the TMDL equation typically partitions the 
long-term-average external load as follows (U.S. EPA 1999): 

TMDL= !-LAs + !-WLAs + Background + MOS (2) 

where !-LAs=sum of load allocations (nonpoint sources, above 
background) (kg/year); !-WLAs=sum of waste load allocations 
(point sources) (kg/year); Background = background load (~natu­
ral sources) (kg/year); and MOS=margin of safety (kg/year). 

Separate consideration of "internal load" is usually inappro­
priate because releases from bottom sediments represent recycling 
of phosphorus that originally entered from the watershed and 
would therefore be reflected in the calibrated net retention term of 
Eq. (1). Explicit modeling of a sediment compartment (i.e., a 
two-box model) may be appropriate if internal recycling is an 
important factor. 

The LAs are assumed to reflect nonpoint sources in excess of 
the background load, i.e., the anthropogenic portion of the total 
nonpoint load. For example. a 100 kg/year total P load from an 
urban watershed would be reflected in two terms of the equation 
(say. 10 kg/year in the background term representing the expected 

load with an undeveloped watershed and 90 kg/year in the LA 
term representing the increase in load above background resulting 
from development of the watershed). 

The background load would equal the total load to the lake if 
the entire watershed were undeveloped. Consideration of the 
background load as a separate term in the equation is useful for 
characterizing anthropogenic impacts and settling realistic goals. 
For example, it is generally not practical to implement a TMDL 
that is below the background load. Reaching this conclusion may 
indicate that the assumed lake goal is unrealistic. 

The load allocation terms (LAs and WLAs) represent expected 
average loads that would occur under the TMDL. Discharge per­
mit limits (typically expressed as daily or monthly maximum val­
ues) would be set to be consistent with discharging average loads 
represented by the WLAs while taking typical variability in efflu­
ent quantity and quality into account. In order to operate in com­
pliance with its discharge permit, the average load from a given 
facility would generally be below the permit level. If discharge 
permit levels were equated directly to the WLAs (without consid­
ering effluent variability), it would be appropriate to consider the 
difference between the expected average and permitted maximum 
loads as part of the MOS. 
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Fig. 2. pH violation frequency versus total P-Upper Klamath Lake. 
Oregon. Y axis-percent of samples (all stations and depths) exceed­
ing pH standard of 9.0; X axis-average lake-mean TP concentration, 
April-October; symbols--observed average excursion frequencies at 
multiple stations in each lake or embayment; line-regression ± 1 
standard error (Walker 2001 a). 

Margin of Safety 

Management measures would be designed so that the expected 
long-term-average external load (sum of allocated point and non­
point loads) would equal the lake assimilative capacity (TMDL) 
less the margin of safety (MOS). In order to draw the distinction 
between variability and uncertainty, it is useful to divide the MOS 
into two components 

MOS= MOV+ MOU (3) 

where MOV=margin of variability (kg/year); and MOU=margin 
of uncertainty (kg/year). 

For a given TMDL, as determined by the lake assimilative 
capacity, increasing the MOV will reduce the expected load to the 
lake (sum of allocated point and nonpoint loads) and increase the 
"compliance rate," or frequency of meeting a given numeric goal. 
Increasing the MOU will increase the "confidence level," or 
probability of meeting the goal at the desired frequency. The com­
pliance rate and confidence level assumed in formulating the 
TMDL may be a lake-specific policy decision and/or determined 
by regulations. As demonstrated below, these factors are at least 
as important as the selection of a numeric goal (P*) in determin­
ing the load allocation that is consistent with a given TMDL. 

The MOS, MOV, and MOU consistent with a given compli­
ance rate (13) and confidence level (ex) can be estimated by attach­
ing stochastic terms to the TMDL mass balance. Random year-to­
year variations in Lake P concentrations are drawn from a 
lognormal distribution with a coefficient of variation S v. If suf­
ficient time series data are available, an alternative approach 
would be to model year-to-year variations deterministically. Un­
certainty in the predicted Lake P concentration under a given 
loading regime is modeled by attaching another lognormal devi­
ate to the lake phosphorus balance with a coefficient of variation 
Su, 

As estimated from Eq. (I), the TMDL represents the long­
term-average load consistent with a compliance rate of 50% and 
confidence level of 50%. To meet the specified lake target (P*) at 

50% 

0 
45% 

c 
0 40% () 

0- 35% 
(I) .... 
ra 30% ..J 

'0 25% ... 
0 
I: 20% w 
'E 15% ra 
'0 c 
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5% 

0% 
0% 20% 40% 60% 80% 100% 

Load Reduction 

Fig. 3. Uncertainty in predicted Lake P concentrations versus load 
reduction and parameter set. Hypothetical case; top curves: initial 
model calibrations based upon limited site-specific data (S M = 0.2, 
Sr,=O.4); bottom curve: refined calibrations after extensive monitor­
ing of lake and BMP performance (SM=O.I, Sr, =0.2). 

the specified compliance rate (13) with a confidence level (ex), the 
allocated long-term-average load (LA) would have to be reduced 
as follows: 

LA (Q+KA)P*FvFu=TMDLFvF u (4) 

Fv=exp( -Z"Sv) 

exp(-ZaSu) 

(5) 

(6) 

where =allocated long-term-average load=TMDL-MOS (kg! 
year); F v=factor accounting year-to-year variability in Lake P 
concentration; Sv=year-to-year coefficient of variation (CV) of 
Lake P concentration; Fu=factor accounting for uncertainty in 
the predicted average Lake P concentration; Su=model error CV 
for predicted average Lake P concentration; Z" = standard normal 
variate with upper tail probability 13; Z" = standard normal variate 
with upper tail probability ex; 13 = assumed compliance rate 
=fraction of years with Lake P<P*; and ex=assumed confi­
dence level = probability Lake P<P* at specified 13. 

S v estimates derived from variance component analyses of 
large lake and reservoir datasets typically range from 0.1 to 0.2 
(Knowlton et al. 1984; Smeltzer et aL 1989), A lake-specific es­
timate can be derived if long-term monitoring data are available. 

By combining the above equations, the MOS, MOU, and 
MOV can be explicitly quantified as follows: 

LA=TMDL-MOS=TMDLFvFu (7) 

MOS=TMDL(l-FvFu) (8) 

MOU=MOS(1 F u)/(2- Fv) (9) 

MOV=MOS-MOU (10) 

Uncertainty in Lake P Forecast 

The uncertainty in forecasting the long-term-average Lake P con­
centration resulting from a given load allocation is represented in 
the parameter S u. This uncertainty reflects potential errors in 
forecasting the performance of load control measures imple­
mented to achieve the required load allocation. as well as poten-
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Table 1. Total Maximum Daily Load Calculation Spreadsheet 

Variable Units Value 

Input values: 
Existing load mg/m2 year 1,000 

Net settling rate m/year 10 
Water load m/year 10 
Target Lake P ppb 25 
Det. pond P removal rate I day -l/mg/m3 0.0003 
Confidence level % 90% 

Compliance rate % 80% 
Year-to-year coefficient of variation 0.1 
Lake model coefficient of variation 0.2 

Pond removal rate coefficient of variation 0.4 
Output values: 
Nonnal deviate (tail probability=a) 1.282 

Future load coefficient of variation 0.282 

Future Lake P coefficient of variation 0.346 

Uncertainty factor 0.642 

Normal deviate (tail probability = f3) 0.842 
Variability factor 0.919 

Total maximum daily load mg/m1year 
Allocated load mg/m2 year 
Margin of safety mg/m1year 
Margin of uncertainty mg/m1year 
Margin of variability mg/m2 year 
Margin of safety/total maximum % 
daily load 
Load reduction % 
Pond residence time days 
Load reduc (MOS=O) % 
Pond residence time (MOS=O) days 
Pond 

tial errors in forecasting Lake P concentration resulting from a 
given load. Uncertainty in load forecasts can be particularly im­
portant when the TMDL calls for large reductions in nonpoint 
loads requiring extensive implementation of control measures 
with uncertain performance. 

Since lake concentrations are assumed to be proportional to 
load, the variance terms are additive when expressed as coeffi­
cients of variation and the forecast uncertainty can be partitioned 
as follows: 

(11) 

where 5 u=error CV of forecasted Lake P concentration; 
5M =lake model error CV; and 5L = error CV of forecasted load. 

The magnitude of 5 M would depend upon the amount of in­
formation available to support the TMDL assessment. Error 
analyses that account for various sources of uncertainty in formu­
lating the lake phosphorus budget (Walker 1982; Wilson and 
Walker 1989; Walker 1999) can be applied to estimate appropriate 
values of 5 M on a case-by-case basis. Approximate estimates of 
5 M can be derived from residual variance associated with various 
lake modeling efforts, adjusted for the variance associated with 
random measurement errors in load and lake concentration esti­
mates. 5 M would typically range from ~O.l when data are plen­
tiful (model is calibrated to loads and lake concentrations mea­
sured over three or more years) to ~O.3 when the data are limited 
(loads estimated from land use, regionally calibrated export coef­
ficients, and regionally calibrated P retention models). 

500 

295 

205 
167 

38 
41% 

70% 

80 

50% 

33 

46 

Notes 

Lo Long-tenn-average load/surface area 
U Calibrated to historical lake data 
Q Outflow/surface area 

P* For compliance with water quality standards 
K Second- order sedimentation rate 
a Probability of achieving target 

at specified frequency 

f3 Expected percent of years with Lake P<P* 

Sy Year-to-year coefficient of variation in Lake P 

SM Lake modeling uncertainty 
SK Detention pond perfonnance uncertainty 

NORMSINV(a) 
SL= RSK 

Su= (S~+SZ)112 
Fu= exp( -ZuSu) 
Zy= NORMSINV(f3) 
F y= exp( ZySy) 

TMDL= (Q+U)P* 

LA TMDLFUFy 
MOS= TMDL-LA 

MOU= MOS (1- F u)/(2 FU-Fy) 

MOV= MOS-MOU 
MOSfTMDL 

R I-LA /Lo 
T= QR/[(l-R)KLoJ 

Ro= I-TMDULo 
To= QRo/[(l-Ro)KLoJ 
T- Pond volume allocated to MOS 

The magnitude of 5 L would be expected to increase with the 
percent load reduction required under the TMDL, as the forecast 
loads become increasingly dependent on assumptions regarding 
BMP performance. For illustration purposes, it is useful to con­
sider a simplified case in which the entire load reduction will be 
accomplished in a sequence of detention ponds (approximating 
plug flow) with second-order phosphorus removal kinetics 
(Walker 1987). The outflow load (Lo) is predicted from the in­
flow load (L/) by the following equation: 

(12) 

where R=load reduction, as fraction of inflow load; P/=inflow 
concentration (mg/m3

); K=second-order phosphorus removal rate 
(llday/mg/m3

); and T=hydraulic residence time (days). 
For a given inflow load (in this case, reflecting existing con­

ditions), variance in the outflow load is reIated to uncertainty in 
the assumed removal rate (K). From a first-order error analysis, 
the relative standard error of the predicted outflow load is 

5 l. =R5K 

5t=5~+R25i 

(13) 

(14) 

where 5 K=error CV of P removal rate. Approximate parameter 
estimates (K=O.00031/day/mg/m3 and 5K~0.4) are based upon 
performance data from 24 runoff detention ponds (Walker 1987). 

Fig. 3 shows the CV of forecasted Lake P concentration as a 
function of percent load reduction for two sets of error coeffi-
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Fig. 4. TMDL sensitivity to compliance rate and confidence level. Baseline=existing conditions; A-D=load allocations for alternative assump-
tions: other model as listed in Table 1. 

cients. The top curve uses error coefficients (S M = 0.2, 0.4) 
that might be appropriate when the TMDL analysis is based upon 
limited site-specific data for calibrating the lake model and pre­
dicting BMP performance. It is reasonable to expect that lower 
coefficients would be applicable in situations when more exten­
sive site-specific data are available, as reflected in the bottom 
curve. While not intended to be quantitatively accurate, 3 
demonstrates in a qualitative sense that forecast errors (and result­
ing margins of safety) would tend to be lower in TMDLs requir­
ing smaller load reductions and/or based upon larger data sets and 
more accurate models. 

The detention pond model is used here as an example. We 
would expect qualitatively similar patterns for other control mea­
sures (e.g., onsite BMPs), as well. For example, the potential 
error in forecasting small incremental reductions resulting from 
targeting obvious sources in the watershed (Hhot spots") would 
tend to be lower than the potential error in forecasting reductions 
resulting from implementation of BMPs on a watershed scale 
after obvious sources have already been controlled. 

Example 

As formulated above, the pond detention time (1) represents the 
decision variable in the TMDL. The objective is to find the value 
of T that satisfies the TMDL objective (i.e., meets Lake P target 
with the specified compliance rate and confidence leven. Since T 
is proportional to volume for a given flow, it can be considered a 
rough surrogate for size and cost. The equations are nonlinear and 

a numerical solution can be derived in a spreadsheet with circular 
references, as detailed in Table 1. 

4 shows load allocation sensitivity to the assumed com­
pliance rate and confidence level for the sample case defined in 
Table 1. The error CVs are set to represent a situation where the 
TMDL is being developed with relatively limited site-specific 
data for calibrating the lake model and evaluating BMP perfor­
mance, The TMDL is independent of these assumptions because it 
is based exclusively on the lake assimilative capacity [Eq. (1)]. 

The allocated load accounts for a smaller portion of the TMDL 
when uncertainty and variability are considered. In the extreme 
case (D) when both factors are considered, the MOS accounts for 
41 % of the TMDL. The required load reduction is 70%, as com­
pared with 50% when uncertainty and variability are ignored 
(Case A). Corresponding pond detention times are 80 and 33 
days, respectively. The cost of overdesigning the pond by 46 days 
(or 139%) to provide the MOS might be considerable. The deten­
tion times in this simplified example exceed typical designs 
(7-30 days, Walker 1987) because the entire lake inflow is being 
treated in a single pond, This reduces the inflow concentration 
and load reduction at a given detention time below those expected 
in typical control programs with ponds located in critical source 
areas with higher inflow concentrations, as opposed to treating the 
entire inflow. 

Phased Approach 

Fig. 5 demonstrates that implementing the TMDL in an iterative 
fashion with incremental load reductions and ongoing data collec-
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Fig. 5. Phased approach to TMDL implementation. Phase I-initial allocation ignoring margin of safety; alternative-allocation including 
margin of safety based upon limited data; Phase 2-final allocation considering margin of safety after implementation of Phase I controls and 
after model refinements based additional lake and BMP evaluation. 

tion is one way of reducing the margin of safety and its associated 
cost while still satisfying TMDL objectives (P*,a,[3). As dem­
onstrated in 4, implementing the TMDL in one step would 
require an MOS of 41 % and a detention pond 139% larger than 
required without an MOS. Using a phased approach, the MOS is 
initially ignored. The first phase of controls is designed without a 
margin of safety, implemented, and monitored for a period of 
5-10 years. Additional watershed and lake monitoring during this 
period provides a basis for refining models and reducing the un­
certainty associated with forecasting lake responses to additional 
controls, as reflected in S M and S L' respectively. The second 
phase of controls is designed with the benefit of new information 
to provide a margin of safety than is consistent with the original 
TMDL objectives. Compared with a one-phased approach, the 
two-phased approach allocates a smaller portion of the TMDL to 
the MOS (20 versus 41%) and a smaller detention pond (50 ver­
sus 80 days). The latter would translate into considerable cost 
savings while still achieving TMDL objectives. This approach is 
practical when a degree of flexibility (allowance for expansion) 
can be built into the designs of the control measures. These ben­
efits would have to be balanced against the possibility that the 
two-phased approach would require a longer time frame. 

Conclusions 

A simplified model for formal consideration of variability and 
uncertainty in developing a lake phosphorus TMDL is demon-

strated above. Using empirical frequency response models (e.g., 
Figs. I and 2) to set lake goals provides a means of considering 
spatial and temporal variability while using a relatively simple, 
steady-state mass balance model. 

There are many site-specific factors to consider in developing 
a TMDL (e.g., urgency of water quality problem, cost, land avail­
ability, public opinion, limitations in control technology, etc.). 
Large safety factors associated with the MOS may not be unusual 
in the context of other public works projects (e.g., bridges, build­
ings, etc.). On the other hand, overdesign may not be possible or 
practical in many situations. 

Caution is advised in setting an unrealistically high-confidence 
level andlor compliance rdtes as TMDL goals. When evaluated 
relative to water use impairment, public health, or risk to aquatic 
life, there may already be a substantial margin of safety in the 
water quality standard or criterion that drives the TMDL. Requir­
ing high margins of safety may hinder the progress of lake resto­
ration by increasing costs, reducing credibility, and stimulating 
controversy. 

An incremental or "adaptive" approach to achieving the de­
sired compliance rate and confidence level through successive 
TMDLs may be appropriate, as recommended in a recent study by 
the National Research Council (2001). Accomplishing incremen­
tal load reductions while acquiring and analyzing new data over 
time can increase the probability of meeting the lake objective 
with each iteration of the process, as illustrated by the simple 
example presented above. As demonstrated in the long-term effort 
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to achieve water quality standards in the Everglades (Walker 
1995; SFWMD 2002), a phased approach is applicable in situa­
tions where the load allocation is not immediately achievable 
(with or without an MOS) because of limitations in control tech­
nology. 
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