IMPACTS OF PROPOSED WASTEWATER DIVERSION ON EUTROPHICATION AND RELATED WATER QUALITY CONDITIONS IN THE ILLINOIS RIVER, OKLAHOMA

Ù

K

Ĩ

È

-

-

prepared for

State of Oklahoma Office of Attorney General 112 State Capitol Oklahoma City, Oklahoma 73105

by

William W. Walker, Jr., Ph.D. 1127 Lowell Road Concord, Massachusetts 01742 617-369-8061

January 1987

SUMMARY

The Illinois River is a unique and highly-valued resource in Oklahoma, as reflected by its designations as a Scenic River and coldwater fishery. Over the past decade, phosphorus and chlorophyll-a (algal pigment) concentrations have increased by factors of two to three in Lake Frances and Tenkiller Ferry Reservoir and are currently found within ranges considered "hypereutrophic", or excessively enriched. The associated increases in dissolved and particulate organic materials have led to violations in standards for dissolved oxygen, turbidity, and aesthetics at several locations in and below these impoundments. It is also likely that excessive levels of algal-derived organic material in Lake Frances are responsible for the 20% violation frequency of the trihalomethane standard observed at the Siloam Springs water supply. This degradation has serious implications for aquatic life, recreational uses, aesthetic qualities, water supplies, and public health.

Mass balance calculations indicate that phosphorus loadings from point sources in Arkansas are transported over long distances and have significant effects on Lake Frances, Tenkiller Ferry Reservoir, and the intervening river segments. Currently, sewage effluent from Arkansas point sources accounts for at least 16% of the flow leaving Lake Frances under the seven-day-average, two-year-frequency, low-flow conditions (7-Q-2) to which Oklahoma water quality standards apply. The proposed Fayetteville discharge would increase the effluent percentage to 23%. Under median summer flows, the effluent percentage would increase from 97 to 147. Existing point and nonpoint nutrient loadings have already consumed the basin's capacity to assimilate nutrient loadings without causing nuisance algal growths. The watershed is simply too small to handle effluent volumes of the existing and proposed magnitudes without violating the standards, unless nutrient removal can be accomplished down the levels of existing nonpoint sources in the basin (roughly .15 mg/liter Total P and 2.5 mg/liter Total N)

Because of its nutrient contributions, the proposed sewage diversion from Fayetteville will increase the spatial and temporal violation frequencies of the following water quality standards applicable to the Illinois River Basin (Oklahoma Water Resources Board, 1982):

- (1) **nutrients**: "not to exceed levels which result in maninduced eutrophication problems"
- (2) **dissolved oxygen**: minimum 6 mg/l in stream segments
 - minimum 5 mg/l in lake surface waters
- (3) turbidity: maximum 10 NTU

ł

(4) solids (suspended and/or settleable): "maintained so as to be essentially free of floating debris, bottom deposits, scum, foam, and other materials, including suspended solids of a persistent nature, from other than a natural source"

In addition, the nutrient enrichment and other changes in Illinois River water quality which would result from the Fayetteville discharge would be in direct violation of Oklahoma's Anti-Degradation Policy for its Scenic Rivers.

TABLE OF CONTENTS

TABLES (8) FIGURES (23) APPENDIX A - Mean Concentration by Station and Flow Regime Illinois River Longterm Monitoring Stations October 1981 - September 1986

INTRODUCTION

I have prepared this testimony at the request of the Office of the Attorney General, State of Oklahoma, with the following objectives:

- (1) to review data on eutrophication and related water quality conditions in Illinois River basin;
- (2) to evaluate the potential impacts of the proposed wastewater diversion from Fayetteville, Arkansas, on water quality conditions in the basin;
- (3) to determine whether Oklahoma water quality standards related to eutrophication will be violated as a result of the diversion.

My qualifications (details provided separately) include fifteen years experience in the development and application of predictive techniques for surface water quality, with an emphasis on stream, lake, and reservoir eutrophication problems. I recently completed a seven-year research project for the Office of the Chief, U.S. Army Corps of Engineers. This project involved the compilation and analysis of a nationwide data base on reservoir quality, which included information from Tenkiller Ferry Reservoir, Beaver Reservoir, and several others in Oklahoma and Arkansas (Walker, 1981). The data base was used to develop and test empirical techniques for predicting eutrophication and related water quality conditions in impoundments (Walker, 1982, 1984b, 1985). Several of the techniques which were developed under the above research project have been applied to the relatively large volume of water quality and hydrologic data available for the Illinois River Basin in . order to develop a technical basis for evaluating the impacts of the proposed Fayetteville discharge. Results are described below.

DATA SOURCES

The following evaluations are based partially upon review of water quality and hydrologic data retrieved from EPA's STORET data base.

Relevant stations and time periods are summarized in Table 1. A station map is shown in Figure 1. Stations along the Illinois mainstem have been renumbered in downstream order ("IO1" above Clear Creek in Arkansas to "Il6" just above the river mouth in Oklahoma).

The data include samples taken in 1985 and 1986 under the recent EPA/AR/OK Illinois River Basin Study, as well as results from intensive surveys of Tenkiller Ferry Reservoir conducted by the Corps of Engineers, Tulsa District, in 1986. Appendix A displays summaries of water quality data from various longterm monitoring stations as a function of flow regime. These summaries are referenced at various locations in the discussion below.

Survey reports on Lake Frances (USEPA,1977a;Threlkeld,1983), Tenkiller Ferry Reservoir (USEPA,1977b), and the Upper Illinois Basin (Oklahoma State Board of Health,1976; Terry et al.,1982; Roberts/ Schornick & Assoc.,1984; Gakstatter and Katko,1986) have also been reviewed. Aerial and ground reconnaissance of the watershed have provided useful perspectives on terrain, land uses, river characteristics, and reservoir characteristics.

BASIN CHARACTERISTICS

As illustrated in Figure 2, the Illinois River flows approximately 160 miles from Northwest Arkansas, through Northeast Oklahoma, to the Arkansas River. The main river channel has a relatively uniform gradient of approximately 5 ft/mile. Tributary and headwater slopes are higher (10-22 ft/mile). With the exception of two reservoir segments (Frances and Tenkiller), flow velocities along the mainstem in Oklahoma are relatively high. Tommy Fain (pers. comm.,1986), a ranger with the Oklahoma Scenic River Commission, indicates that high velocities pose a hazard to recreational users below Lake Frances and are responsible for occasional drownings, even during relatively low-flow periods. Under an extreme low flow of 52 cfs at the USGS gauge in Watts (USGS Station Number 07195500, 7-Q-2 = 82 cfs, mean flow = 578 cfs), the average velocity is .84 ft/sec or 14 miles/day (Daryl Walters, USGS, Tulsa, pers. com., 1986). At this rate, the time-of-travel between Lake Frances and Tenkiller Ferry would be on the order of 5 days and much lower under typical flows. The basin slope and flow velocity, combined with the low mean hydraulic retention time of Lake Frances (< 2 days) are conducive to downstream transport of nutrient discharges from the upper watershed, particularly over long time scales. The result is that Tenkiller Ferry Reservoir is the most likely receptacle for nutrients discharged from the upper watershed.

Because of geologic and climatologic factors, the Illinois River has high water quality potential in relation to other areas of the Moving west from the Mississippi River, mean precipitation is state. above 48 in/yr throughout most of Arkansas, begins to drop rapidly at the Oklahoma border, and reaches 16 inches/yr in western Oklahoma. Associated with this gradient in precipitation are gradients in natural vegetation (forested->grassland->desert shrub) and increases in watershed sediment yield (250->800 tons/mi2-yr) (Langbein and Schumm, 1958). As a result of these gradients, streams in the eastern end of the state, particularly including the Illinois River, have the lowest natural suspended solids levels and highest potential aesthetic The existing and proposed future discharge of nutrients to appeal. these waters jeopardize this unique resource by promoting excessive levels of algal growth in various stream and reservoir segments.

Generally, water quality surveys conducted to date have not detected extensive growth of algae or periphyton in stream channels, but algae have been found in abundant quantities in reservoir segments (Gakstatter and Katko,1986). Large diurnal swings in dissolved oxygen, which reflect photosynthesis and respiration by algae or periphyton, have been detected in stream segments below Lake Frances, however. The existing data base is limited because intensive surveys of the river below Lake Frances have not been performed under summer, low-flow

conditions which are most conducive to algal growth. Photographic evidence (Pigg,1986) suggests that significant algal densities are found in river reaches below Lake Frances and that these densities have increased in recent years.

Based upon basin hydraulic and morphometric characteristics and upon data analyses discussed below, Lake Frances and Tenkiller Ferry Reservoir are the two segments which are most vulnerable to eutrophication problems. While phosphorus uptake, deposition, and/or adsorption may occur in stream segments under low-flow conditions, these processes would be reversed under high-flow, scouring conditions. Algae generated within the two impoundments are transported to downstream river segments and lead to violations in Oklahoma's water quality standards, as described below.

LONGTERN TRENDS

Significant increases in phosphorus concentrations have been observed at mainstem river stations over the past decade or so (Figure 3). Some of the concentration changes can be explained by variations in hydrologic conditions. Because of the importance of point-source phosphorus discharges in the upper basin, stream concentrations tend to be higher above Lake Frances during low-flow years (e.g., 1980). Comparing years of similar mean flows, however, indicates that the average phosphorus concentration at the inflow to Lake Frances has roughly doubled over the ten-year period (e.g., 1975 vs. 1985). Photographs taken by Jimmy Pigg (1986) of the Oklahoma State Health Department demonstrate that increases in algal densities and noticeable decreases in aesthetic qualities occurred over roughly the same time period at Round Hollow below Lake Frances.

Figure 4 illustrates that the observed increases in stream phosphorus levels have been accompanied by substantial increases in chlorophyll-a concentrations in Lake Frances and Tenkiller Ferry Reservoir, based upon comparison of average concentrations detected by

-4

the EPA National Eutrophication Survey (1974-1975) with those derived from the recent EPA/OK/AR/COE basin study (1985-1986).

Chlorophyll-a, an algal photosynthetic pigment, is the most direct and practical measure of algal density. The following system is commonly used to classify lakes and reservoirs into trophic states based upon mean chlorophyll-a concentrations (Reckhow and Chapra, 1983):

"Oligotrophic"	< 4 ppb
"Mesotrophic"	4 - 10 ppb
"Eutrophic"	10-25 ppb
"Hypereutrophic"	> 25 ppb

As shown in Figure 4, chlorophyll-a concentrations in Lake Frances and Tenkiller Ferry Reservoir increased two to three fold over the ten-year period. Based upon the 1986 data, Lake Frances and the upper end of Tenkiller would be classified as "hypereutrophic", the highest and most productive trophic state category. Such conditions are generally characterized by excessive quantities of algal-derived, soluble and particulate organic material, occasional scums and floating mats, and obnoxious taste and odors. Large fluctuations in dissolved oxygen levels occur on a daily basis because of photosynthesis and respiration processes. Periods of sustained oxygen depletion and resulting fish kills may occur following periodic die-off of algal blooms. Such conditions are stressful to aquatic life and can severely impair aesthetics and water uses (recreation, water supply) (Walmsley, 1984).

As demonstrated below, algal growth in Lake Frances increases significantly under low flows and is limited by hydraulic residence time under average to high flows. Flows on the dates of sampling by the EPA National Eutrophication Survey in 1974 were high in relation to those experienced during the summer 1985-6 surveys. Hydrologic factors may partially explain the observed differences in chlorophyll-a between the 1974-5 and 1985-6 time periods in Lake Frances. The increases in

phosphorus concentrations cannot be explained based upon hydrologic factors, however.

Because of its relatively long hydraulic residence time, changes in Tenkiller cannot be explained by short-term flow variations. The coincident nitrate decreases and phosphorus increases in Tenkiller suggest that eutrophication has been accelerated due to increased pointsource nutrient loadings. Relative to algal cell requirements (typically 7 parts nitrogen to 1 part phosphorus), point sources tend to be rich in phosphorus and non-point sources tend to be rich in nitrogen, particularly in this watershed because of the apparent significance of nitrate loadings resulting from land application of animal wastes (Gakstatter and Katko,1986). The ratio of nitrate nitrogen to ortho phosphorus decreased from 20 to 6 at the near-dam station over this time period. This decrease indicates that Tenkiller has been driven towards a nitrogen-limited condition, which is undesirable for reasons discussed below.

The decrease in N/P ratio further aggravates the problem of nutrient enrichment because it promotes the growth of nitrogen-fixing bluegreen algae which tend to be more objectionable to water users (scum formation, odor, taste). Because they have the unique capability to derive nitrogen supplies from the atmosphere, bluegreens have competitive advantage over other algal types under nitrogen-limited conditions.

Because their cells are relatively large and/or toxic, bluegreens are generally less susceptible to predation by zooplankton than are other algal types. As a result, bluegreen productivity tends to create an excessive organic load which is processed by decomposer organisms (bacteria and fungi) and leads to oxygen depletion. Other, less undesirable algal types (diatoms, greens) are grazed by zooplankton and thereby supply the food chain which leads to fish production.

Certain species of bluegreens (including Anabaena, Aphanizomenon, Microcystis, and others) are known to produce potent neurotoxins and livertoxins which cause disease and death of livestock and other animals that drink from algae-infested water. Indirect evidence indicates that one or more of these toxins are responsible for certain cases of human gastroenteritis and dermatitis from municipal and recreational water supplies which have been studied elsewhere (Carmichael, 1986).

Aphanizomenon, a notorious problem bluegreen, was found at the upper end of Tenkiller during the 1985 (Gakstatter and Katko, 1986). In contrast, the 1974 EPA survey found that Tenkiller algal populations were dominated by diatoms and Aphanizomenon was not detected. Aphanizomenon is notorious for causing taste and odor problems in water supplies, which are numerous along Tenkiller Ferry Reservoir.

Gakstsatter and Katko (1986) observed no floating mats or clumps of bluegreens during their one-day sampling program on Lake Tenkiller in 1985. The chlorophyll-a concentrations detected in their survey, however, (1.7 - 12 ppb), were much lower than average values detected in the extensive biweely surveys conducted by the Corps of Engineers (COE) in 1986 (10 - 35 ppb).

Floating algal mats and scums were noted during the COE 1986 water quality surveys, particularly at the upper end of the lake (Steve Nolen, Corps of Engineers, Tulsa, pers. com. 1987). Accumulations of algal mats along shorelines in Tenkiller and "pea soup" conditions have drawn numerous complaints from marina operators and recreational users. According to Mr. Nolen, an aquatic biologist and lifelong resident of the area, it is generally considered by area residents and lake users that water quality has deteriorated significantly in recent years. For example, because of its exceptional clarity, Lake Tenkiller was once the most popular spot for skin diving in the state. Its popularity has decreased dramatically in recent years, however, with the concommitant increases in algal densities and reductions in water clarity (Steve Nolen, Corps of Engineers, Tulsa, pers.comm., 1987). The observed increases in phosphorus and chlorophyll-a concentrations, reductions in N/P ratio, development of nuisance bluegreen algal populations, development of surface scums and mats, and resulting adverse impacts on lake beneficial uses are all likely attributed to increased point-source loadings. These changes constitute violations of Oklahoma's nutrient standard 4.10(c), which prohibits nutrient levels or shifts in N/P ratio resulting in "man-induced eutrophication" (Oklahoma Water Resources Board, 1982).

As suggested by its position at the bottom of the watershed (Figure 2) and high flow velocities, Tenkiller is the ultimate receptacle for phosphorus discharges from the watershed. Mass-balance calculations described below indicate that most of the phosphorus discharged from point sources in the basin reaches Tenkiller. Because of its relatively long hydraulic residence time (averaging 250 days), low non-algalturbidity levels, and high non-point nitrogen loadings, Tenkiller is particularly susceptible to phosphorus loadings from point and non-point sources in the watershed. Reduction of these sources is critically needed to reverse the significant water quality deterioration which has been experienced in recent years.

PHOSPHORUS TRANSPORT CALCULATIONS

Figure 5 displays stream total phosphorus concentrations as a function of flow at three stations: Near Siloam Springs (above Lake Frances), Watts (below Lake Frances), Tahlequah (above Tenkiller Ferry). Above Lake Frances, phosphorus decreases with increasing flow, for flows below the mean annual value. This reflects dilution of upstream point source discharges and indicates that significant transport of those discharges to Lake Frances occurs. At flows above the mean annual value, runoff and streambed scouring mechanisms begin to dominate and concentration tends to increase slightly with flow. At the Watts and Tahlequah stations, the low-flow dilution mechanism is less apparent, but still present. Phosphorus deposition occurring in Lake Frances and

the stream channel under low flow conditions tends to obscure the dilution mechanism at downstream stations. At high flows, however, much of this material is transported downstream, as reflected by the increasing concentrations.

Phosphorus transport calculations have been performed using data from each of the three stream stations discussed above. Given intermittent grab-sample concentration data, the flows at the times (or days) of sampling, and the continuous flow record for each station, the problem is to estimate the total quantity or flux of material past the station over a given time period. Since phosphorus concentration cannot be considered independent of flow (Figure 5), averaging the concentration independently of flow will yield invalid results.

FLUX, a computer program developed for the Army Corps of Engineers (Walker,1984b,1986a), has been used for these calculations. The program employs a variety of techniques for calculation of loading, estimation of confidence limits, display of data, and optimization of monitoring program designs. Basically, the approach is to divide the samples into strata or groups based upon flow regime, calculate loadings separately for each stratum, and then combine the estimates across strata, weighting according to frequency of occurrence.

Such calculations usually show that long-term loading estimates are relatively sensitive to samples taken under high flow regimes and insensitive to samples taken under low flows. The sampling programs at these stations have generally been periodic, as opposed to flowweighted. A greater emphasis on sampling of high flow regimes would provide an improved basis for loading computations. The FLUX program is designed to make most efficient use of available data and to develop unbiased loading estimates, regardless of sampling strategy, however.

To provide a reasonably broad coverage of flow regimes, the calculations have been performed using all samples taken between October 1981 and September 1986. These samples have been mapped onto the

continuous daily flow record for October 1981 through March 1986 (the latest available). Where missing, flows at the upstream station (near Siloam Springs, above Lake Frances) have been estimated from the flow record at Watts based upon drainage area ratio. Results of calculations are summarized in Table 2. Over this time period, flows averaged near normal.

Interpretation of the loading estimates is facilitated by mass balance calculations. The watershed has been segmented as shown in Figure 6. Flow and phosphorus loading estimates have been developed for each segment by adding the point and nonpoint loading estimates. Point source loading estimates have been developed from various data sources, (see Table 5, below). Nonpoint loadings have been estimated by applying the average runoff rate during the 1981-1986 sampling period (.36 meters/year) to an average estimated runoff concentration.

Based upon review of monitoring data from nonpoint-source watersheds in the basin (e.g., Illinois River above Mud Creek, Clear Creek, Baron Fork, and Caney Creek), average runoff concentrations of 100 and 150 ppb have been assumed for Oklahoma and Arkansas portions of the watershed, respectively. The higher value for Arkansas is consistent with a higher intensity of land uses (62% agricultural, 8% urban, 30% forested in Arkansas (Arkansas Soil and Water Conservation Commission,1979) vs. 38%, 3%, and 59%, respectively, in Oklahoma (Oklahoma Dept. of Pollution Control,1976)) and with my impressions regarding land use intensities derived from aerial reconnaissance of the watershed in November 1986.

Loadings calculated for each watershed have been summed moving downstream to Lake Tenkiller. Phosphorus retention in Lake Frances has been estimated using an empirical model developed from Corps of Engineer reservoir data (Walker, 1985). Results of the phosphorus routing calculations are displayed in Figure 7. The 90% confidence limits for the loading past each station are shown in relation to predicted phosphorus concentration profiles due to nonpoint and total (point+nonpoint) loadings. The predicted total concentration profile is within the confidence ranges of the loadings calculated from monitoring data at each of the three stations.

These results suggest that point and nonpoint discharges from the upper basin are transported downstream to Tenkiller Ferry. Although some transformation (from soluble to particulate) and intermittent deposition/scouring may occur in the stream channel and in Lake Frances, total phosphorus is transported over long distances and times, particularly in a basin with this type of elevation profile (Figure 2) and without major seasonal flood plains (Lee et al., 1985). Based upon these results, impacts on both Lake Frances and Tenkiller Ferry Reservoir should be considered in evaluating the proposed Fayetteville discharge.

CORPS OF ENGINEER 1986 SURVEY OF TERKILLER FERRY RESERVOIR

As discussed above, conditions in Tenkiller Ferry have deteriorated significantly over the past decade or so. This section summarizes results from the survey conducted by the Corps of Engineers in 1986, in conjunction with the EPA/AR/OK Illinois Basin Study. The cooperation of Steve Nolen of the Corps of Engineer Tulsa district in supplying these data is acknowledged.

The reservoirs was sampled biweekly in profile at each of 14 sampling stations identified in Figure 8. Figure 9 summarizes average, mixed-layer (0-12 ft) mean concentrations for October-September 1986 samples. The cross-hatched areas indicate the 67% confidence limits for the mean value (mean +/-1 standard error). Stations are numbered in increasing order moving upstream from the dam.

Consistent with data from other reservoirs with similar morphometry and loading distributions (Walker,1985), significant longitudinal water quality gradients are found in Tenkiller Ferry. Stations closer to the inflow tend to have higher nutrient, chlorophyll-a, and turbidity levels, and lower transparency. Based upon temperature, ortho phosphorus, BOD, and chlorophyll-a values, Station 14 is clearly in the river above the reservoir, as opposed to the reservoir itself. Levels of ortho phosphorus drop off suddenly (from 120 to 20 ppb), once the river enters the reservoir below Station 14; this primarily reflects algal uptake and longitudinal transport mechanisms (advection and dispersion). Turbidity measurements indicate that Oklahoma's water quality standard (10 NTU) is violated at upper reservoir stations due to a combination of high algal densities (in the hypereutrophic range) and inorganic suspended solids.

Figure 10 displays dissolved oxygen variations in the surface layer of the reservoir. All stations show a tendency towards supersaturation during the daytime, which reflects intense algal photosynthesis. At the upper reservoir stations, oxygen concentrations reached 6 ppm above saturation. Based upon the levels of chlorophyll-a (exceeding 30 ppb), large diurnal fluctuations in oxygen are likely. The lower limits of oxygen levels (i.e. early morning values following nighttime respiration) are unknown because diurnal sampling was not conducted. Oxygen concentrations below 5 ppm (the Oklahoma standard for lake surface waters) were detected at three stations.

The dissolved oxygen situation deteriorates significantly when variations with depth are considered (Figures 11 and 12). Vertical temperature and oxygen profiles from the near-dam station (01) are displayed over the April-October 1986 period. Anaerobic conditions develop at 70 feet of depth in mid-late June and extend until turnover in October. Note that the maximum depth of the reservoir is about 150 feet, but the measurements only extend to the 70-foot level. It is possible that anaerobic conditions develop earlier at the bottom.

The rate of oxygen depletion below the thermocline reflects the sedimentation and decay of organic material entering from the watershed and generated in the mixed layer are a result of algal productivity. In a eutrophic reservoir with a relatively long hydraulic residence time,

such as Tenkiller, the latter source of oxygen demand is likely to dominate. Based upon oxygen and temperature profiles at the near-dam station (Figure 12), the rate of oxygen depletion below the thermocline is estimated to be 1222 mg/m^2 -day. Figure 13 shows the relationship between hypolimnetic oxygen depletion rate and mixed-layer chlorophyll-a concentrations for other Corps of Engineer reservoirs (Walker,1985). In 1986, the oxygen depletion rate and chlorophyll-a concentration in Tenkiller were at the upper limits of those observed in other Corps reservoirs. This reflects an extreme degree of eutrophication.

OXYGEN VIOLATIONS AT LONGTERM MONITORING STATIONS

There is evidence that oxygen depletion in Tenkiller Ferry, generated as a result of excessive nutrient loadings and algal productivity, is transported to the Lower Illinois River downstream of the dam, where it leads to violations of the 6 mg/liter standard. Figure 14 displays oxygen and temperature data from four longterm Illinois River stations for the 1975-1986 period. Average concentrations and violation frequencies have been calculated and displayed as a function of month.

The temperature data show that the water is warmed by an average of 3-4 deg-C as is passes through Lake Frances (upstream IO4 vs. downstream IO6 and I12). Exposure of the fertile waters to solar radiation in Lake Frances increases water temperature and provides the energy to support abundant algal growth, when residence times are adequate. Water temperatures below Tenkiller Ferry (I16) are 4-6 deg-C cooler than the upstream river during summer months because of the hypolimnetic (bottomwater) discharge from the dam.

As a result of the hypolimnetic discharge, oxygen violations are much more frequent below the reservoir than at upstream river stations. Violations upstream of Lake Frances (Station IO4 Near Siloam Springs) are relatively infrequent (less than 10% for all months). This station is located above stream reaches which are conducive to algal growth, despite high nutrient levels. Violation frequencies at Watts and Tablequah are at intermediate levels and peak at 25-30% of the samples during May. During July, August, and September (when oxygen is depleted in the bottom waters of Tenkiller), the standard is violated more than 50% of the time. This situation is especially significant because the Lower Illinois below Tenkiller is designated as a trout fishery (Oklahoma Water Resources Board, 1982).

The actual violation frequencies at all stations may be greater than those indicated in Figure 14 because the data do not reflect diel variations. The greater dissolved oxygen violation frequencies at stations below Lake Frances partially reflect the effects of nutrient loading and excessive oxygen demands generated through photosynthesis by algae and periphyton. Decreases (not increases) in point and nonpoint nutrient sources in the basin are needed to bring the river and reservoir segments into compliance with Oklahoma's water quality standards and designated uses.

ILLINOIS RIVER IN AND BELOW LAKE FRANCES

The impacts of nutrients on Lake Frances (and on the Illinois River downstream of Lake Frances) depend strongly upon flow regime and season. Hydraulic residence times on the order of 1-2 weeks are generally required for full algal response to nutrients in reservoir environments (Walker,1985). Under mean flows (578 cfs at Watts), Lake Frances has a hydraulic residence time of approximately 1.8 days, based upon a lake volume of 2.8 hm^3 reported by Threlkeld(1983), and the opportunity for development of significant algal biomass is limited. Under low flows, however, residence time increases (e.g., to 12 days for 7-Q-2 of 82 cfs at Watts). Given adequate residence time, the lake's shallow depth (mean 1.2 meters), and the abundant supplies of available nutrients contributed primarily by upstream points sources (particularly under low-flow conditions), Lake Frances is an ideal environment for algal growth.

The impacts of residence time on algal productivity in Lake Frances are strongly reflected in the data summaries displayed in Appendix A. As flow regimes decrease from medium to low, water quality conditions in Lake Frances (as reflected by the data summaries from the USGS station at Watts just downstream of the lake) respond in a way which is consistent with increasing algal productivity. These responses include significant increases in chlorophyll-a, organic nitrogen, total kjeldahl nitrogen, biochemical oxygen demand (which partially reflects algal respiration), and frequency of dissolved oxygen violations (D.O.< 6 mg/liter). Again, the calculated frequencies of oxygen violations (15% at Watts under low-flow conditions) are based upon daytime (generally, afternoon) grab samples and likely underestimate actual violation frequencies calculated from diel sampling. Nitrate concentrations also decrease at low flows due to increased algal uptake. Similar changes are noted when one compares the stations upstream and downstream of Lake Frances under low and mean flow regimes.

Under low to mean flows, turbidity levels are significantly higher in Lake Frances than in the upstream river. The elevated turbidity levels are caused by a combination of inorganic suspended solids (resuspended bottom sediments) and algal cells. Based upon seasonal comparisons, Gakstatter and Katko (1986) concluded that the algalrelated component is not insignificant and that the elevated turbidity levels may be sensitive to upstream nutrient discharges. Since algal cells are particulates and scatter light, there is no scenario in which an increase in nutrients and algal counts would not cause an increase in turbidity, regardless of background turbidity levels due to inorganic suspended solids.

During the low-flow sampling survey conducted by Threlkeld(1983), (mean flow at Watts = 158 cfs, minimum flow = 95 cfs) turbidity exceeded Oklahoma's water quality standard (10 NTU) in all 30 samples collected in and below the lake between July and September of 1982, but in none of the 5 samples collected above the lake during the same time period. Maximum turbidity levels exceeded 40 NTU and chlorophyll-a levels reached 115 ppb. Generally, turbidity and chlorophyll-a levels were lower during the EPA intensive survey in August of 1985 (mean flow at Watts = 258 cfs, minimum flow = 200 cfs), but violations of the turbidity standard were still detected in and below the lake (Gakstatter and Katko, 1986).

Because of the lake's shallow mean depth (1.2 m), light extinction by inorganic suspended solids in Lake Frances is insufficient to cause light limitation of algal growth . Based upon empirical studies of data from Corps of Engineer reservoirs (Walker,1984a,1985), the ratio of Secchi Depth to mixed layer depth is generally less than .2 in reservoirs where light-limitation is a significant factor influencing chlorophyll-a responses to nutrients. In the case of Lake Frances, this ratio averages about 0.5. Thus, light limitation is not likely to be a major factor.

Threlkeld (1983) pointed out the sensitivity of algal growth in Lake Frances to residence time and the relationship between increasing chlorophyll-a concentration and increasing nitrate assimilation (inflowoutflow) in the reservoir. Although nitrogen and phosphorus are generally available at levels in excess of algal growth requirements under most flow regimes, nitrate levels tend to decrease significantly under low summer flows. Threlkeld suggested that nitrogen is most likely to be the limiting nutrient in Lake Frances under low-flow conditions. Based upon an earlier survey, the Oklahoma State Department of Health (1976) also concluded that algal growth in Lake Frances was potentially nitrogen-limited.

Figure 15 displays nitrate, ortho phosphorus, and chlorophyll-a concentrations in Lake Frances and in the downstream river as a function of runoff rate (discharge/watershed area). Nitrate tends to be depleted at low flows due to algal uptake in the reservoir. Ortho phosphorus, however, remains at elevated concentrations (100-200 ppb) under low flows. Additional sampling under low flows (approaching 7-Q-2) would

provide improved data for assessing limiting factors and lake conditions under extreme flow conditions.

Based upon these data, Threlkeld's assessment that nitrogen is the limiting nutrient in Lake Frances under low-flow conditions seems to be correct. Peak algal biomass under low-flow conditions may be limited by nitrogen loadings to the reservoir. This evaluation is especially significant in light of the increases in nitrogen loading which would result from the proposed Fayetteville diversion, as evaluated further below.

The effects of algal production in Lake Frances are transported to the downstream river. As noted by Gakstatter and Katko (1986), algae and turbidity levels tend to decrease below Lake Frances as a result of dilution and/or sedimentation mechanisms. Figures 16-18 display mean river profiles for August 1985 and 1986, based upon data from the EPA/AR/OK Illinois Basin study. Stations are arranged in downstream order (see Figure 1 for locations). Significant increases in algae and related water quality components (organic nitrogen, kjeldahl nitrogen, turbidity) are apparent as the river enters Lake Frances. Water quality improves downstream of the lake.

Conditions were apparently much more severe during August 1986, as compared with August 1985, the period of the intensive survey by Gakstatter and Katko. During August 1986, eutrophic waters (Chlorophyll-a > 10 ppb) extended as far downstream as Chewey, approximately 20 miles below the dam. Consistent with the discussion above, removals of nitrate and ammonia nitrogen in Lake Frances were also more evident during August 1986 period, when algal populations were at much higher levels. It is possible that the heavy rains and high flows experienced during the August 1985 survey may have resulted in lower residence times in Lake Frances and lower algal growth. Because of this, conclusions regarding lake and river dynamics and condition should not be drawn exclusively from the August 1985 intensive survey. Additional intensive studies, under low-flow conditions, would provide improved bases for evaluating the system.

Monitoring of diurnal oxygen variations provides useful information photosynthesis and respiration and is essential to determining compliance with dissolves oxygen standards in streams with elevated nutrient and algal levels. Figures 19 and 20 display diel variations monitored at several locations along the Illinois River during August of 1985. Consistent with the chlorophyll-a and related water quality profiles, diel oxygen variations were less significant at stations above Lake Frances (approximately 1-1.5 mg/liter), as compared with stations below (2.5-4.5 mg/liter). This reflects increased photosyntheses and respiration by algae and/or periphyton in the river below the lake. Violations of the 6 mg/liter standard were also detected during the early morning hours at two stations (Above Flint Creek and East of Chewey). The frequency and severity of oxygen violations were probably much higher in August 1986, based upon much higher algal levels (Figures 16-18). Unfortunately, diel studies were not performed during that period.

The diel swings and daytime super-saturation indicate that significant photosynthesis occurs in the river downstream of the lake, despite the fact that algal concentrations decrease moving downstream. Apparently, the rate of algal removal (possibly due to sedimentation or predation) exceeds the rate of production in downstream reaches.

Survey results generally suggest that algal problems and related aesthetic problems in the river below Lake Frances are primarily the result of algae generated in the lake and transported downstream. These conclusions are subject to the important data limitation that the river below the Lake Frances has not been intensively studied under low-flow conditions.

MODELING IMPACTS OF FAYETTEVILLE DIVERSION ON LAKE FRANCES

Calculations have been performed to evaluate the potential impacts of the proposed Fayetteville diversion on nutrient levels and algal growth in Lake Frances. Projections have been made for a total of 18 cases involving combinations of the following:

- flow regime (7-Q-2, low, mean);
- (2) upstream discharges (existing, with P controls, none);
- (3) Fayetteville discharge (without, with);

Predictions without and with the Fayetteville discharge are summarized in Tables 3 and 4, respectively. For each case, the calculations involve formulation of water and mass balances on the lake and prediction of water quality conditions, expressed in terms of the following:

- (1) total phosphorus concentration;
- (2) total nitrogen concentration;
- (3) nitrogen-to-phosphorus ratio = "(TN-150)/TP"

= indicator of limiting nutrient;

 (4) potential chlorophyll-a = algal growth potential associated with the nutrient concentrations
= chlorophyll-a which would develop at long residence

times and optimal light intensities;

- (5) mean chlorophyll-a = predicted algal concentrations when effects of nutrient levels, residence time, and turbidity are considered;
- (6) secchi depth = water column transparency, as influenced by algal and non-algal turbidity.

Calculations of nutrient retention in the lake and responses of chlorophyll-a and Secchi depth are based upon empirical models developed from reservoir data (Walker, 1984b, 1985). These models have been developed from and extensively tested against reservoir data from several areas of the country, including Lake Keystone on the Arkansas River in Oklahoma and Beaver Reservoir on the White River in Arkansas. The chlorophyll-a response model is designed to account for potential effects of algal growth limitation by phosphorus, nitrogen, turbidity, and flushing rate.

Estimates of existing point sources have been developed from various sources, as detailed in Table 5. Estimates of non-point source concentrations and loadings from the watershed above Lake Frances are 80^{-150} based upon review of monitoring data (vs. flow regime) from watersheds 150^{0} b in the basin not strongly impacted by point sources (Caney Creek, Baron Fork, Illinois River above Mud Creek, Clear Creek). Threlded balland=60 $Jll \oplus Savoy 510$ yrb.

Results of the calculations are displayed in Figure 21. For each flow regime and variable, six bars are shown: (1) and (2), predicted values without and with the Fayetteville discharge under existing pointsource loadings; (3) and (4), predicted values without and with the Fayetteville discharge, assuming reduction of existing point-source discharges in the basin to 1 mg/liter total phosphorus; (5) and (6), predicted values without and with the Fayetteville discharge, with upstream nonpoint loadings only. Circles indicate observed mean values under low and mean flows, as derived from the data summaries in Appendix A. Comparisons of observed and predicted values for each variable indicate that the empirical models employed for estimating nutrient retention and algal responses are applicable to the system.

For each scenario, addition of the Fayetteville discharge to the existing point and nonpoint loadings would cause increases in nutrient and chlorophyll-a concentrations and reductions in transparency.

The changes in mean chlorophyll-a and transparency are relatively small due to the excessive magnitudes of the existing point-source loadings and low hydraulic residence time, which limits the ability of the algae to consume the abundant nutrient supply in Lake Frances (but not in Tenkiller). Changes in "potential chlorophyll-a", which might be found, for example, in shallow, backwater areas isolated from the main river flow through or downstream of the reservoir, are more substantial. Percentage increases in nutrients and mean chlorophyll-a and reductions in transparency due to the Fayetteville discharge are greater under conditions involving improved treatment or elimination of other point sources.

Under each scenario, changes resulting from the Fayetteville discharge constitute violations of Oklahoma's nutrient standard which prohibits man-induced eutrophication. The increases in algal density attributed to the Fayetteville discharge would also increase the violation frequencies of other water quality standards related to algal growth, including turbidity, aesthetics, and dissolved oxygen. Because standards are violated under existing conditions, the river is "waterquality limited" and any percentage increase in violation frequency is unacceptable.

The ratio (TN-150)/TP is an indicator of the relative importance of nitrogen (low values) vs. phosphorus (high values) as factors limiting As shown in Figure 21, the model predicts a shift in algal growth. limiting nutrient from nitrogen to phosphorus with the implementation of point-source phosphorus controls in the basin. Despite substantial reductions in phosphorus concentrations associated with basinwide phosphorus controls, the predicted responses of mean chlorophyll-a are relatively small. Phosphorus concentrations in Lake Frances under low flows would still be high enough (150-200 ppb) to support abundant algal growth, even with basinwide effluent reductions to 1 mg/liter Total P. This reflects the fact the natural dilution capacity of the watershed under low flows is too small in relation to the high volume of existing point-source discharges and low volume (nutrient trapping efficiency) of Lake Frances. For example, under 7-Q-2, sewage effluent accounts for 16% of the river flow through Lake Frances and 71% of the total phosphorus loading at effluent concentration of 1 mg/liter (Table 3).

With complete elimination of point sources from basin, mean chlorophyll-a concentration in Lake Frances under 7-Q-2 flows would be

reduced to 25 ppb, as compared with 69 ppb under existing loading conditions. Phosphorus removal to concentrations below 1 mg/liter and/or diversion of existing waste loadings out of the basin would be required to cause substantial improvements in Lake Frances. Despite these results, phosphorus removal to 1 mg/liter for major point sources is recommended for the purpose of improving/protecting Tenkiller Ferry Reservoir.

The watershed has inadequate dilution capacity to handle the existing point-source discharges, even with phosphorus removal. Figure 22 shows the cumulative frequency distribution of river composition at Watts, expressed as percent of the flow comprised of effluent, based upon analysis of the June-September monthly flow record between 1974 and 1985 and the total upstream point-source discharge under present conditions (10.4 mgd, Table 5). The projected impact of a 6.1 mgd Fayetteville discharge on the frequency curve is also shown.

Under existing conditions, effluent accounts for at least 10% of the flow through Lake Frances during 45% of summer months. With the addition of Fayetteville, effluent would account for at least 10% of the flow during 60% of the summer months. Under existing conditions, effluent accounts for at least 20% of the river flow during 9% of summer months. With the addition of Fayetteville, effluent would account for at least 20% of the flow during 27% of the summer months. Both curves in Figure 22 would shift further to the right with future development upstream.

At the lowest monthly mean flow recorded between 1974 and 1985 (39 cfs or 25.2 mgd, August 1980), effluent accounted for 41% of the river flow. These high percentages are especially disturbing in view of the fact that sewage treatment efficiency upstream has not been particularly impressive (e.g., average and maximum effluent BOD-5 from Rogers in 1985-1986 were 56 mg/liter and 110 mg/liter, respectively, based upon STORET data). I wonder how awareness of these statistics might influence the enthusiasm of weekend floaters or the thirst of Siloam

Spring residents during the summer. The observed degradation of the river and reservoirs, as discussed above, is no surprise when the high effluent percentages are considered.

To supplement the above, additional evaluations of the Fayetteville discharge impacts on Lake Frances are being performed using QUAL-2, a model which has been designed for simulation of algal growth and dissolved oxygen impacts in rivers and shallow impoundments (Walker,1983b; VanBenscoten and Walker,1984; Brown and Barnwell,1985). Preliminary results of these modeling studies confirm nitrogen limitation under 7-Q-2 conditions in Lake Frances and indicate that, for existing point-source discharges in the watershed, nitrogen loading from Fayetteville would increase peak algal biomass and increase the extent of dissolved oxygen violation downstream of Lake Frances due to algal respiration and diurnal variations.

BASIN-WIDE MASS BALANCE CALCULATIONS

Tables 5, 6, and 7 document mass-balance calculations which have been performed for the Illinois River Basin above and below Lake Frances for average, dry, and wet hydrologic years, respectively. Flow volumes and nutrient loadings (ortho phosphorus, total phosphorus, and total nitrogen) from point and nonpoint sources in the basin are quantified. Percentage increases due to the Fayetteville discharge have also been calculated and displayed in Figure 23. Annual nutrient retention in Lake Frances is relatively insignificant (averaging 10% for phosphorus and 6% for nitrogen). Because of this, the calculated total nutrient loadings to the basin would be similar to those reaching Tenkiller Ferry Reservoir. Calculated loadings of ortho phosphorus do not necessarily reach Tenkiller Ferry Reservoir, however, because some would be converted to particulate phosphorus during transport.

Expressed on a percentage basis, impacts of the Fayetteville discharge on nutrient loadings to each reservoir would be higher during drier years. The runoff rate for water year 1981 (4 inches/yr or .1 meters/yr) has been used as an example of a dry hydrologic year.

Under this condition, the Fayetteville discharge would increase the annual loadings of total phosphorus and nitrogen to Lake Frances by 8.6% and 16.6%, respectively, vs. 5.6% and 7.1% under average flows. Total phosphorus and nitrogen loadings to Tenkiller Ferry Reservoir would increase by 5.5% and 9.2%, respectively, during a dry year and by 7.1% and 7.7% during an average year. Regardless of their precise magnitudes, these increases are unacceptable in view of the fact that Oklahoma's water quality standards are already being violated due to excessive nutrient enrichment.

Table 8 compares loading estimates under existing conditions with estimates developed previously based upon 1974-1975 monitoring data collected by the EPA National Eutrophication Survey (1977a,b). The EPA/NES calculated loadings to Lake Frances and to Tenkiller Ferry for an "average hydrologic year" (basin runoff=.3 m/yr). Using the same EPA/NES data set, Walker(1982) calculated loadings to Tenkiller Ferry for 1974-1975, when runoff was relatively high (.6 m/yr). The loading estimates for existing conditions in Table 8 are based upon the same methodology employed in Tables 5-7, with runoff rates adjusted in each çase to conform to the 1974-1975 estimates. The comparisons indicate 📈 increases in nitrogen loading, as compared with 14-167% increases in phosphorus loading over this period. These results are generally consistent with the observed increased eutrophication in the reservoir and river segments discussed previously and further suggest that point sources have been primarily responsible for these increases.

CONCLUSIONS: IMPACTS OF DIVERSION ON OKLAHOMA WATER QUALITY STANDARDS

The addition of nutrient loadings from Fayetteville would cause increases in nutrient and algal concentrations in Lake Frances, the Scenic River below Lake Frances, and in Tenkiller Ferry Reservoir. The monitoring data reviewed above indicate that these segments are already severely impacted by nutrient loadings from the upper watershed. The watershed is simply too small to provide sufficient dilution of the existing point-source discharges, especially given the presence of Lake Frances, which acts as an algal culturing vessel and supplies abundant quantities of organic material to the downstream river. Further increases in nutrient and algal levels attributed to the "man-induced" Fayetteville discharge would constitute a violation of Oklahoma's nutrient standard (4.10(c)). Increases in observed violation frequencies for dissolved oxygen (4.11(a)) and turbidity (4.10(b)) would also be expected.

Another standard directly related to algal growth is 4.10(d) Solids (Suspended and/or Settleable). "Floating debris, bottom deposits, scum, and foam" are all characteristic of eutrophic waters and are probable contributors to the historically observed decreases in the aesthetic qualities of the river below Lake Frances. Mass-balance calculations 1055 indicate that the nuisance algal scums and mats observed in Tenkiller $\sqrt{0}$ primarily result from excessive point-source nutrient loadings. The scenic and recreational values of this resource are in jeopardy due to $\sqrt{10}$ past and proposed future increases in nutrient loading.

There are numerous water supply withdrawals in Oklahoma from Lake Frances, Tenkiller Ferry Reservoir, and the intervening river. Potential water supply impacts related to eutrophication include taste and odor, interferences with water treatment processes (filter clogging, coagulation, flocculation), and increased chlorine demand (Bernhardt,1980; Walker,1983a). Such interferences can have significant economic effects on water supplies in terms of chemical and energy costs. Violations of the standard for Taste and Odor (4.10(e)) may also occur as a result of increased nutrient enrichment.

Health risks associated with generation of trihalomethanes (THM's) and other chlorinated organic compounds (Johnson and Jensen, 1986) should also be considered in evaluating the implications of further nutrient enrichment on water supplies in the basin. Algae are known to be potent precursors of trihalomethanes (THM's), which are formed when organic

.

materials in water supplies react with chlorine added for disinfection purposes (Oliver and Shindler, 1980; Dorin, 1980). Chloroform, the dominant THM, has been shown to be carcinogenic (National Academy of Science, 1977). Empirical studies have shown that indices of eutrophication (phosphorus, chlorophyll-a) are correlated with reservoir organic carbon and finished-water THM levels (Walker, 1983a, 1986b).

Quarterly samples from the Siloam Springs water supply (which withdraws from Lake Frances) indicate a THM range of 41 to 111 ppb for the 1983-1986 period. The existing EPA maximum contaminant level of 100 ppb was exceeded in 20% of the samples. It is possible, if not likely, that Oklahoma water supplies in the Illinois River (in particular, Watts, which also withdraws water from Lake Frances) also experience THM levels above 100 ppb. No THM data are available from these supplies, however, because EPA regulations do not require THM monitoring in supplies serving less than 10,000 people. Although about 15,000 people drink water withdrawn from Tenkiller Ferry Reservoir, they are distributed over 26 individual supplies. Because of the somewhat arbitrary sampling requirements established the EPA, these people are not protected from cancer risks associated with THM's under existing regulations. For a given treatment process, such risks increase significantly (roughly in proportion to) the level of organic material in the source water supply.

Revisions of the existing drinking waters' regulations under development by the EPA may involve more stringent THM controls, especially in view of the fact that the existing maximum contaminant level of 100 ppb corresponds to a cancer risk of approximately 2 deaths/10,0000 (National Academy of Science,1977), which is much higher than the risk level at which other toxic contaminants are regulated. West Germany, for example, has a THM standard of 25 ppb (Dorin,1980). Further increases in algal-derived organic material may increase health risks associated with THM's and increase water treatment costs required for compliance with future regulations. Mass-balance calculations described above show that increases in nutrient and algal concentrations would result from diversion of the Fayetteville discharge into the Illinois River basin. These increases would constitute a change in water quality which is in direct violation of Oklahoma's Anti-Degradation Policy for designated Scenic Rivers (Section 3, Oklahoma Water Resource Board, 1982).

The above factors should be considered, in addition to the values of the Illinois River as a unique scenic and recreational resource for Oklahoma, in evaluating impacts of the proposed diversion and in developing an effective longterm management program for point and nonpoint nutrient sources in the watershed.

REFERENCES

Arkansas Soil and Water Conservation Commission, "Nonpoint Source Pollution Assessment Summaries for the Arkansas River Basin", June 1979.

Bernhardt, H.G., "General Impacts of Algae on Potable Water Preparation", in "Restoration of Lakes and Inland Waters", U.S. Environmental Protection Agency, EPA-440/5-81-010, December 1980.

Brown, L.C. and T.O. Barnwell, "Computer Program Documentation for the Enhanced Stream Water Quality Model QUAL2E", U.S. Environmental Protection Agency, Athens, Georgia, EPA/600/3-85/065, August 1985.

Carmichael, W.W., "Eutrophication and Toxic Blue-Green Algae Waterblooms: Their Role as Agents of Water-Based Disease", presented at "Lake and Reservoir Management: Influences of Nonpoint Source Pollutants and Acid precipitation", 6th Annual International Symposium, North American Lake Management Society, Portland, Oregon, November 1986.

CH2M Hill, "Fayetteville Pilot Plant Study", Final Report, Prepared for City of Fayetteville, Arkansas, June 1986.

Dorin, G., "Organochlorinated Compounds in Drinking Water as a Result of Eutrophication", in "Restoration of Lakes and Inland Waters", U.S. Environmental Protection Agency, EPA-440/5-81-010, December 1980.

Gakstatter, J.H. and A. Katko, "Illinois River Survey, August 16-29, 1985", Environmental Research Laboratory, U.S. Environmental Protection Agency, Duluth, Minnesota, Draft, May 1986.

Johnson, J.D. and J.N. Jensen, "THM and TOX Formation: Routes, Rates, and Precursors", <u>Journal of the American Water Works Association</u>, Vol. 78, No. 4, pp. 156-161, April 1986.

Langbein, W.B., and S.A. Schumm, "Yield of Sediment in Relation to Mean Annual Precipitation", <u>Transactions of the American Geophysical Union</u>, Vol. 39, pp. 1076-1084, December 1958.

Lee, G. F., R.A. Jones, L.E. Lang, "Development of a Phosphorus-Eutrophication Management Strategy for Vermont: Evaluating Available Phosphorus Loads", prepared for U.S. Army Engineer Division, New England, Waltham, Massachusetts, CERL-TR-N-86/01, November 1985.

National Academy of Science, "Drinking Water and Health", Safe Drinking Water Committee, National Research Council, Washington, D.C., 1977.

Oliver, B.G. and D.B. Shindler, "Tribalomethanes from the Chlorination of Aquatic Algae", <u>Environmental Research and Technology</u>, Vol. 14, No. 12, pp. 1502-1505, December 1980.

Oklahoma Department of Pollution Control, "Areawide Waste Treatment Management Planning - 208 for Oklahoma - Water Quality Management Plan for Illinois River", March 1979.

REFERENCES (CT.)

Oklahoma State Department of Health, "Illinois River Intensive Study, 14 June-30 August, 1976", 208 Program Plan Element IB-6, EPA Grant Number P-006045-01-0, 1976.

Oklahoma Water Resources Board, "Oklahoma's Water Quality Standards-1982", Publication No. 111, Oklahoma City, Oklahoma, 1982.

Reckhow, K.H. and S.C. Chapra, <u>Engineering Approaches for Lake</u> <u>Management, Volume 1: Data Analysis and Empirical Modeling</u>, Butterworth Publishers, Boston, 1983.

Roberts/Schornick & Associates, "Illinois River Assessment Report", prepared for Office of the Attorney General of Oklahoma, December 1984.

Terry, J.E., E.E. Morris, J.C. Petersen, and M.E. Darling, "Water-Quality Assessment of the Illinois River Basin, Arkansas", U.S. Geological Survey, Water Resources Investigations Report 83-4092, Little Rock, Arkansas, 1984.

Threlkeld, S.T., "Lake Frances Phase I Diagnostic/Feasibility Study", prepared for U.S. Environmental Protection Agency, Grant No. S-006284-01-0, 1983.

U.S. Environmental Protection Agency, "Nitrogen and Phosphorus in Wastewater Effluents", Working Paper No. 22, National Eutrophication Survey, Corvallis Environmental Research Laboratory, July 1974.

U.S. Environmental Protection Agency, "Report on Lake Frances, Adair County, Oklahoma", Working Paper No. 588, National Eutrophication Survey, Corvallis Environmental Research Laboratory, March 1977a.

U.S. Environmental Protection Agency, "Report on Tenkiller Ferry Reservoir, Cherokee and Sequoyah Counties, Oklahoma", Working Paper No. 593, National Eutrophication Survey, Corvallis Environmental Research Laboratory, March 1977b.

VanBenschoten, J. and W.W. Walker, "Calibration and Application of QUAL-II to the Lower Winooski River", <u>Water Resources Bulletin</u>, Vol. 20, No. 1, pp. 109-117, February 1984.

Walker, W.W., Jr., "Empirical Methods for Predicting Eutrophication in Impoundments, Report 1: Data Base Development", prepared for Chief of Engineers, U.S. Army, USAE Waterways Experiment Station, Vicksburg, Mississippi, Technical Report E-81-9, 1981.

Walker, W.W., Jr., "Empirical Methods for Predicting Eutrophication in Impoundments, Report 2: Model Testing", prepared for Chief of Engineers, U.S. Army, USAE Waterways Experiment Station, Vicksburg, Mississippi, Technical Report E-81-9, 1982.

REFERENCES (CT.)

Walker, W.W., Jr., "Significance of Eutrophication in Water Supply Reservoirs", <u>Journal of the American Water Works Association</u>, Vol. 75, No. 1, pp. 38-42, January 1983a.

Walker, W.W., Jr., "Some Recent Adaptations and Applications of QUAL-II in the Northeast", in Barnwell, T.O., ed., "Proceedings of the Stormwater and Water Quality Model Users Group Meeting, January 27-28, 1983", University of Florida, U.S. Environmental Protection Agency, Athens, Georgia, EPA-600/9-83-015, September 1983b.

Walker, W.W., Jr., "Empirical Prediction of Chlorophyll in Reservoirs", in "Lake and Reservoir Management", Proceedings of Third Annual Conference, North American Lake Management Society, Knoxville, Tennessee, U.S. Environmental Protection Agency, 1984a.

Walker, W.W., Jr., "Empirical Methods for Predicting Eutrophication in Impoundments, Report 4: Applications Manual", prepared for Chief of Engineers, U.S. Army, USAE Waterways Experiment Station, Vicksburg, Mississippi, Technical Report E-81-9, Draft, December 1984b.

Walker, W.W., Jr., "Empirical Methods for Predicting Eutrophication in Impoundments, Report 3: Model Refinements", prepared for Chief of Engineers, U.S. Army, USAE Waterways Experiment Station, Vicksburg, Mississippi, Technical Report E-81-9, March 1985.

Walker, W.W., Jr., "Models and Software for Reservoir Eutrophication Assessment", in "Lake and Reservoir Management, Volume II", Proceedings of Fourth Annual Conference and International Symposium on Applied Lake and Watershed Management", North American Lake Management Society, Lake Geneva, Wisconsin, 1986a.

Walker, W.W., Jr., "Empirical Relationships between Reservoir Eutrophication and Water Supply Trihalomethane Levels", presented at International Conference on Water and Human Health, American Water Resources Association, Atlanta, Georgia, November 1986b.

Walmsley, R.D., "A Chlorophyll-a Trophic Status Classification System for South African Impoundments", <u>Journal of Environmental Quality</u>, Volume 13, No. 1, pp. 97-104, January-March 1984.

TABLES

1	Station Codes and Descriptions
2	Results of Phosphorus Transport Calculations
3	Lake Frances Mass-Balance / Eutrophication-Response Calculations Without Fayetteville Discharge
4	Lake Frances Mass-Balance / Eutrophication-Response Calculations With Fayetteville Discharge
5	Basinwide Mass Balance Calculations - Average Year
6	Basinwide Mass Balance Calculations - Dry Year
7	Basinwide Mass Balance Calculations - Wet Year
8	Comparisons of Nutrient Loading Estimates Existing Conditions vs. 1974-75

Table 1Stations Codes and Descriptions

	STORET STA	ALLON . INDEX			
	CODE	STATION CODES PRIMARY	SECONDARY	DESCRIPTION	SEQ
	11644.8ml				TVET
	ficortei	otaliós		tenkiller res	TKOZ
	licoetul	otallóó		tentiller res	TK#3
	Licortui Licortui	eka0167 aka0168		teakiller res teakiller res	TK84 TK85
	licortei	ata@167		testiller res	TK86
	licoetui	atel178		lenkiller res	TX87
	licoetul	oka\$171		tentiller res	TK88
	licoetal	cKa#173		tentiller res	TKIN
	licoetal	oka#174		tenkiller res	TKTI
	licoetul	ctati75		tenKiller res fontillen nor	TKI2 TX12
	licaetel	oto8177		tentiller res	TKIA
	21okoskd	217002x3z282	¥15	lake francis dam	185
	21oKeshd 21oKeshd	501		below frances sý 1935 shoun flint cneat	167
	Zlotoshd	3 1		east of chevey	118
	21okoshd	sr4		west of chevey	117
	21oKeshd 21oKeshd	sr45 5		combs bridge shame tableanab on 1965	111
	21 of oshd	217808x9z284	sr63	sequoyah ab baron fork	Ш
	21okoshd	217887x8z282	565	horseshoe bend	114
	21okoshd	217482203	\$r75	caney creek above it	T64
	21okoshd	21780da6172381	47196580	il near tablegrab	113
	21okoshd	\$\$67		tenkiller .25 mi ab caney	
	21 altoshd	sr#Z	fr#2	Take frances upper end	
	21 at a she	srus celli	1083 fr44	Take trances middle	
	21okoshd	srgelf81		greenleaf nursery discharge	
	Zlokoshd	srmmt1		nidnestern nursery upper disc	b
	210Koshd 21chnshd	510002 31:72		nickestern aursery lower featilist cases creat are	
	21okoshd	sr68		teakiller off chicken creek r	-
	Zlokoshd	sr69		tentiller dan area	•
	21otoshd 21otoshd	()]gd] ()]gd]		dripping springs	
	Zlokosád	ilignt3		black for hollow springs	
	21 otoshd	21700c1x2r2	17195511	Illinois river or watts	186
	21 okoshd 21 okoshd	217832288	87196888 87197948	flint creek near Kansas haren ferk at alden	184 T15
	Zlokoshd	\$21701	*******	tahleevah sto	
1	Tilóapec	626011	arkfóa	ill ar siloan springs	114
I	Jliéapec fliéapec	450134 151125	ark6t ark41	ill AP Savoy	182
ł	lliapce	050011	arkøda	flint ck nr w siloan spr	
I	Illéapec	158217	ir2	ill e ar pedro ark	183
I	111dance	858228 458228	ir3 Ind	clear crit at savoy arit	T82
1	11164900	151222	ir5	osage ct at logan	183
ł	llidapee	159223	irá	meddy fort ar savoy	TØL
	11164955	154103 151107	ark#7	sager cell ar siloan sp haron foet at datch wille	
	Harl	ar # # # # # # # # # #		siloan springs sto	
	efart	ar 8833553		rogens sta	
	ef2/1 11enener	an 9922963 All t 361		springdale stp tastillan	
	llepanes	401302		tentiller	
	Itepanes	401303		tentiller	
	liepanes 11epanes	4813384 481351		tentiller fantillen antilme	
	llepanes	401322		tentiller inflow	
	11epanes	401351		pian branch	
	IIepanes Tiennes	4013c) 4013cs		barron fork tablaceak ci-	
	llepanes	400301		late featces	
	11epanes	406802		late frances	
	JIIPpanes Itaniner	488803		late frances	
	liepanes	400Ba2		frances inflow	
	llepases	400861		ballard creek	
	llepanes	4888xa		stillwater stp	

Station		Siloam Spr	Watts	Tahl equah	
USGS Code		07195400	07195500	07196500	
Drainage Area	mi ²	509	635	959	
Mean Annual Flow	cfs	450	561	. 867	
October 1981-March 1986:		.88	,88	,90	
Mean Flow	cfs	496	619	983	
Mean Flow	hm ³ /yr	442	551	875	
Total P Load	kg/y r	162975	193952	212625 🗳	-
Flow-Weighted Conc.	ppb	369	3 5 2	243	
Coef. of Variation *		0.08	0.08	0.09	
Number of Samples		60	83	82	
October 1981-March 198 Mean Flow Mean Flow Total P Load Flow-Weighted Conc. Coef. of Variation * Number of Samples	36: cfs hm ³ /yr kg/y r ppb		,6 5 619 551 193952 352 0.08 83	جو م 983 875 212625 243 0.09 82	.

Table 2 Results of Phosphorus Trapport Calculations

* Standard Error of Estimate / Mean

Barry FK -102 pp
Table 3

.

Lake Frances Mass-Balance / Eutrophication-Response Calculations Without Fayetteville Discharge

LAKE FRANCES MASS-BA	alance / E	UTROPHICAT	ION RES	ponse ca	LCULATIO	NS	VITHOUT	FAYETTEV	ILLE DIS	CHARGE
CASE KYDROLOGIC, CONDITION	4	1 7-9-2	2 1 TM	3 MEAN	4 7-Ω-2	5 1 AU	6 NEAN	7 7-0-2	8 107	9 NEAN
FAYETTEVILLE	•	80	R0	RO	80	no	80	10	80	no
OTHER POINT SOURCES		exist	exist	exist	p=1660	p=1888	p=1000	80	no	no
NONPOINT SOURCE CHAI	RACTERISTI	ន								
Runoff	n/yr	8.845	1.1·	1.32	1,945	0.1	1.32	8.845	1.1	0.32
Nonpoint Total P	ppb	B1	100	150	88	199	158	88	188	150
Nonpoint Ortho P	DOD	40	50	75		58	75	48	58	75
Nonpoint Total N	ppb	1889	1689	2580	1998	1698	2500	1868	1688	2588
Non-Algal Turbidity	î/n	0.8	1.0	1.2	\$.8	1.0	1.2	6.8	1.0	1.2
point source charac	TERISTICS									
Existing Flow	ha3/yr	14.44	14.44	14.44	14.44	14.44	14.44			
Total P	opb	4966	4966	4966	1000	1999	1080			
Ortho P	00b	4128	4128	4128	988	788	988			
Total N	aob	17281	17281	17281	17281	17291	17281			
Favetteville Flow	ha3/yr									
Total P	pob									
Ortho P	ppb									
Total N	ppb									
WATER BALANCE	HN3/YR									
Precipitation Flow	hn3/yr	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61
NonPoint Flow		73.91	164.24	525.57	73.91	164.24	525.57	73.91	164.24	525.57
Point Flow		14.44	14.44	14.44	14.44	14.44	14.44	8.80	0.88	8.44
Favetteville Flow		1.68	1.10	8.69	8.98	0.88	8.88	8.60	1.40	9.29
Total Inflow		98.96	181.29	542.62	98.96	181.29	542.62	76.52	166.85	528.18
Francestion		4.87	4.87	4.87	4.17	4.17	4.87	4.87	4.47	4.97
Outflow		86.B9	177.22	538.55	86.89	177.22	538.55	72.45	162.78	524.11
PROSPHORUS BALANCE	KG/YR								•	
Precipitation Load		69	69	69	69	69	69	69	69	69
NonPoint Load		5913	16424	78835	5913	16424	78835	5913	16424	78835
Point Load		71789	71789	71789	14448	14448	14448			t
Fayetteville Load			1	1	1			1		8
Total Load		77691	88282	158614	28422	38933	93345	5982	16493	789#5
Sedimentation		34761	23169	14388	4766	4344	6768	1839	2961	5723
Qutflow		42938	65834	136386	15656	26598	86584	4952	14432	73182
N1TROGEN BALANCE	KGZYR									
Precipitation Load		4628	4628	4621	4628	4628	4626	4628	4628	4629
NonPoint Load		73988	262784	1313928	73988	2627B4	1313928	7398B	262784	1313928
Point Load		248382	248382	248382	248382	248382	24B3B2		1	
Favetteville Load		1	1	1	1	1	1	j.	İ	1
Total Load		326918	515786	1566922	326918	515786	1566922	78528	267484	1318548
Sedimentation		82768	71627	98893	82788	71627	98893	9278	25888	68749
Oatilow		244218	444159	1476838	244216	444159	1476838	69258	242324	1249791
RESPONSE CALCULATIO	NS									
Residence Time	YPS	0.8319	8.8156	8.8851	8.8319	8.8156	1,0051	8,8383	8.8178	8,1853
Inflow P Conc	pob	894	498	284	235	175	173	83	141	151
1-Ro	***	1.553	8.737	8,945	8.767	8.86A	6.928	828	8,875	1.927
Inflow N Conc	500	3762	2914	291	3767	2919	2914	1884	1643	2516
1-Ra		8.747	1.861	8.942	8,747	0.B61	1.942	.882	1.946	8.948
W.4.1 BL	•		·							
Idtal Phosphorus	ppc	474	367	253	188	150	161	86	87	148
total Nitrogen	990	2816	2586	2741	2814	2586	2741	936	1489	2385
rotential Chi-a	pp b	271	22 1	285	164	134	149	41	65	123
riean uniocophyll-a	ppa	67.I	42.0	13.7	57.5	35.6	13.6	25.1	26.3	12.8
38CCR1	ppo -	8,48	8.49	1.65	0,45	1.53	8.66	1,78	0.69	W.66
(N4+13#1/14		5.4	- 4.4	11.2	14.8	13.7	16.1	11.8	12.1	16.9

Constant Factors: Watershed Area = 1642.4 kn2, Precipitation = 1.13 m/yr, Evaporation = 1.76 m/yr Atmospheric P Load = 30 kg/kn2-yr, Atmospheric N Load = 2000 kg/kn2-yr Reservoir Nean Oepth = 1.8 m, Area = 2.31 km2

chell M^p 1.2 ~

LAKE FRANCES NASS-B	alance / Ei	ITROPHICA	tion res	PONSE CAI	LCULATIO	NS	WITH FAY	ETTEVILL	E DISCHA	RGE
CASE		18	11	12	13	14	15	16	17	18
KYOROLOGIC CONDITIO	N	7-0-2	נטא	MEAN	7-0-2	LOW	HEAN	7-0-2	LOV	MEAN
FAYETTEVILLE		yes	yes	yes	yes	yes	yes	yes	yes	yes
OTHER POINT SOURCES		exist	exist	exist	p≈1888	p=1000	p=1000	80	40	80
NUMPOINT SOUPLE CHA	RACTERISTIC	*								
Runoff		.845	1.1	0.32	8.845	1.1	0.32	6.945	8.1	8.32
Nonpoint Total P	ppb	88	100	150	89	199	158	88	100	158
Nonpoint Orthe P	ppb	48	58	75	48	58	- 75	- 48	58	75
Noopoint Total N	ppb	1883	1680	2588	1208-	1660	2588	1988	1600	2589
Non-Algai Turbidity	i/a	1.8	1.0	1.2	0.B	1.0	1.2	Ø.8	1.4	1.2
POINT SOURCE CHARAC	TERISTICS									
Existing Flow	1m3/7t	14.44	14.44	14.44	14.44	34.44	14.44			
Total P	ppb	4966	4966	4966	1888	1988	1960			
Ortho P	bbp	4128	4128	4128	988	988	900			
Total N Envelopeitte flore	ppb ha 2 Aun	17201	17261	17201	17201	17201	17291			
Total R	nnes/yr anh	8,99 1680	8.99 1848	8.44	8.99 1008	8.99	8.44 1844	8.49	8.44	U.94 1009
Retha P	nah	1440	998	986	988	000	QA B	2000	489	948
Total N	ppb	13159	13158	13150	13158	13150	13158	13158	13150	13150
WATER BALANCE	HN3/YR	• •		• ••	• ••					.
Precipitation Flow	Na3/yr	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61
Roordint Flow		14 44	18 44	323.37	18 44	104.24	323.37	/3.71	109.29	323.3/
Favetteuille Flme		8.44	8.44	8.44	8.44	8.44	8.44	8.44	8.44	A.44
Total Inflow		79.48	189.73	551.86	99.40	189.73	551.86	B4.96	175.29	\$36.62
Evaporation		4.87	4.87	4.47	4.87	4.87	4.47	4.87	4.87	4.87
Outflow		95.33	185.66	546.99	75.33	185.66	546.99	69.69	171.22	532.55
PHOSPHORIES BALANCE	KG/YR									
Precipitation Load		69	69	69	69	69	69	69	69	69
NonPoint Load		5913	16424	78835	5913	16424	78835	5913	, 16424	78835
Point Load		71789	71789	71789	14448	14448	14440	l	· •	1
Fayetteville Load		8440	8440	8448	B448	6449	6448	8440	8448	8448
Total Load		86131	96642	159854	28862	39373	161765	14422	24933	87345
Secimentation Deffice		3/301	23242	101/1	2438	22478	7917 94245	3843	21222	0313 81832
-		10030	44413	140000	11110	00100	,,,,,,,	11411		01001
NITROGEN BALANCE	KG/YR	-								
Precipitation Load		4629	4620	4629	4628	4621	4628	4629	4628	4628
NonPoint Load		73988	262784	1313920	73788	262784	1313920	73988	262784	1313920
Point Lozo Pavailantila tand		298582	248382	248382	110007	298362	298382	110001	110007	11000/
Total Load		110700	114700	1/77040	110700	424779	110700	100514	270306	110700
Sedimentation		118911	94199	189455	118911	94199	199455	36851	43494	27916
Dutflow		318985	532573	1577253	318785	532573	1577253	152663	334896	1351618
RESPONSE CALCULATIO	NS									
KESIDENCE TIAE	yrs anh	4.8291	8.8J47 691	9.8821 201	9165231	\$.0149 919	4,082) 107	1.1343	#.#362 14/	0,085Z
1-Po	p p o	4.545	1 719	271	303	£.856	1.927	1/0	# R47	1.928
Inflow N Conc	oob	4593	3374	3849	4593	3376	3848	2343	221	26B4
1-Rn		8.728	8.858	8.948	¥.728	8.858	8.948	1.886	1.885	8.945
Taist Shaast			,	-			474			
Total Prosphores	ppo	110	282 410¢	203	226	168	7005	191	126	2510
Potential Chl+a	pob	337	258	218	219	40004 Abt	142	187	101	134
Mean Chlorophyll-a	ppb	71.5	42.4	13.6	61.9	37.5	12.9	47.5	32.2	12.9
Secchi	ppb	8.39	0,49	0.65	1.43	1.52	8.66	£.5I	0.55	8.66
(N-150)/P		6.3	7.1	18.4	14.2	15.1	15.8	12.3	14.3	15.7

Constant Factors: Watershed Area = 1642.4 km2, Precipitation = 1.13 m/yr, Evaporation = 1.76 m/yr Atmospheric P Load = 30 kg/km2-yr, Atmospheric N Load = 2000 kg/km2-yr Reservair Nean Depth = 1.8 m, Area = 2.31 km2

.

Table 5

Basinwide Mass Balance Calculations - Average Year

								્ર	• • •	•
water and mass ball	ANCE CALC	ULATIONS	ILLINDIS R	iver above te	KILLER	dan ave	RAGE	KYORDLOGIÇ	YEAR	
POINT SOURCE DISCH	ARGES		· · · · ·	STP CONCENTRAT	TIONS		STP LOADS	/		
TREATMENT PLANT	STATE	FLOV ngđ	FLOU bn3/yr	DRTHO P TO ppb	MAL P ppb	TOTAL N ppb	ORTHO P/ kg/yp	total p kg/yr	Kg/yr	
Prarie Grove	AR	0.24 a	1.33	3975	4758	_ 1 <i>4</i> 888 e	1319	1576	5318	· · · ·
Springdale	AR	6.78 z	9.26	4288 6.7	1 4868 -	6.9 16288 d	/38913	44472	158893	23600
Regers	AR	3.50 a	4.84	- 400 č. l	5388 1	7.319288 d	/ 1936	25652	92926	24600
Watts	DK.	8.87 b	8,10	3975	4758	1600	385	468	1549	
Siloan Spring	AR	2.40 a	3.32	3988 4,6	1791	totelle r	1 12943	15598	59738	17160
Gentry City	AR	8.21 a	1.29	3975	4758	16000.4	e. 1151'	1379	4646	- 11 IAA
Tahlegyah	0K	2.68 c	3.71	3811 Y.O	4200	10505-0-2	7-14883	13365	38913	. 15100
Lincoln City	AR	0.41 a	6.57	3975	4758	16980 +	2254	2693	7871	-
Vestville	OK	0,18 c	8.14	3975	4750	16880 e	558	657	2213	
Indian Nations	OK	₿.85 c	\$.47	3975	4750	16888 +	275	328	1186	
Segnovah	CK	8.84 b	\$.85	3975	4750	16000 e	192	239	774	
Siiliueli	0X	1.24 c	1.33	3975	4758	16898 e	1319	1576	5318	
Stillwell Canaery	OK	8.12 c	1,17	3975	4758	16888 e	668	788	2655	
TOTALS		16.76	23.17	4831	4798	16155	93486	118975	374385	
TOTALS	AR	13.46	18.61	4080	4989	17288	75943	91371	321785	

TOTALS	AR	13.46	18.61	4080	4989	17288	75943	91371	321785
TOTALS	DK	3.29	4.56	3833	4383	11527	17463	19685	52528
TOTALS above Lake	Frances	19.44	14.44	4128	4966	17281	59592	71788	248329
TOTALS below Lake	Frances	6.31	8.73	3872	4498	14426	33815	39276	125976
Fayetteville		6.18 f	8.44	98 8	1888	13158 f	7596	8449	110996
		******		**********					

NONPOINT CALCULATIONS	WATERSHED	KURDTY RACE -	FLOW-WEIGHTED CONCENTRATIONS					
	AREA kn2	FLOM hn3/yr	ORTHO P PPD	TOTAL P PPD	TOTAL N PPb	ORTHO P Xg/yr	total p Xg/yr	total N kg/yr
Above Frances	1644	526.68	75	158	2588 g	39456	78912	1315200
Below Frances	2526	688.32	59	199	1666 g	48416	· 88832	1346661
Total	4178	1334.48	68	120	1995	79872	159744	2661861
TOTAL LOADINGS WITHOUT	FAYETTEVILLE							

	**********	***********						********
Above Frances	1644	540.52	183	279	2893	99848	158612	1563529
Below Frances	2526	817.05	° 91	147	1892	74231	120108	1472637
Total	4178	1357.57	128	199	2236	173278	278719	3036166
						**********		*********

TOTAL LOADINGS WITH FAYETTEVILLE

Total	4178	1366.81	132	204	2384	188874	279159	3147152
Below Frances	2526	817.45	91	147	1862	74231	120108	1472637
Above Frances	1644	548.96	194	299	3050	106644	159652	1674515
*****************************	******			****			****	

PERCENT INCREASE DUE TO FAYETTEVILLE

		****					********	********	******
Above Frances			1.56	6.81	3.98	5.45	7.67	5.68	7.18
Below Frances	ŧ		0.80	0.00	8.86	E.11	0.84	0.88	0.08
Total			1.62	3.74	2.48	3.82	4.38	3.12	3.66

a - Martin Maner, Ark DPCE, 1986 STP Flows

b - OKlahona 200 Projection for 1985

c - Total Phosphorus Loading Estimate to the Ill. River Basin, UESPA, Sept 1984

d - annual means, illinois river survey, storet, 1985-1986

e - assumed

f - phosphorus from Fayetteville discharge permit;

nitrogen = median value for plants practicing phosphorus removal (USEPA,1974)

g - based upon review of monitoring data from non-point-source watersheds in basin and higher density of urban and agricultural land uses in arkansas vs. oklabona portions

0

Basinwide Mass Balance Calculations - Dry Year

IS ILLINOIS RIVER ABOVE TENKILLER DAVI

.

KYOROLOGIC YEAR

DRY

POINT SOURCE DISCHARGES		1	stp concen	TRATIONS		STP LOADS			
		FLOW	FLOW	ORTHO P	TOTAL P	TOTAL N	ortho p	TOTAL P	TOTAL N
TREATMENT PLANT	STATE	ngd	ba3/yr	ppb	ppb	ppb	kg∕yr	kg/yr	kg/yr
Prarie Grove	AR	ŧ.24 a	1.33	3975	4758	16 900 e	1319	· 1576	5310
Springdale	AR	6.78 a	9.26	4288	4888	16280 d	38713	44472	150093
Rogers	AR	3.58 a	4.84	4888	5388	19200 d	19368	25652	92926
Vatts	OK	8.87 b	4.18	3975	4758	16080 +	385	468	1549
Siloan Spring	AR	2.48 a	3.32	3788	4710	18840	12943	15598	59738
Sentry City	AR	0.21 a	8.29	3975	4758	16000 4	€ 1154	1379	4646
Tableguah	OK	2.68 c	3.71	3366	4288	18588 d	14083	15565	38913
Lincoln City	AR	0.41 a	8.57	3975	4758	1 6888 +	2254	2693	9971
Westville	OX	9.19 c	8.14	3975	4758	16888 e	558	657	2213
Indian Nations	OX	8.85 c	8.47	3975	4758	16000 e	275	32B	1186
Seguarah	CK	8.84 b	8.85	3975	4758	16800 e	192	238	774
Stillwell	OX	8.24 c	8.33	3975	4758	16990 e	1319	1576	5318
Stillwell Cannery	OK	1.12 c	8.17	3975	4758	16990 e	661	788	2655
TOTALS		16.76	23.17	4831	4798	14155	93486	118975	374385
TUTALS	AR	13.46	18.61	4888	4989	17288	75943	91371	321785
TOTALS	ÔK	3.29	4.56	3833	4383	11527	17463	19685	52528
TOTALS above Lake	Frances	18.44	14.44	4128	4966	17201	59572	71788	248329
TOTALS below Lake	Frances	6.31	8.73	3872	4498	14426	33815	39276	125976
Fayetteville		6.10 f	8.44	968	1668	13150 f	759,6	B448	118986

NONPOINT CALCULATIONS	Ru WATERSHED	iaoff Rate =	0.1 Flow-Weigh	vyr Ted concen	TRATIONS		LOADINGS	
_	AREA	FLOW	ORTHÓ P	TOTAL P	TOTAL N	ORTHO P	total p	total n
	Km2	bn3/yr	ppd	ppd	ppb	Kg/yr	kg/yr	Xg/yr
Above Frances	1644	164.48	75	150	2588 g	12338	24668	411000
Beloe Frances	2526	252.48	58	109	1666 g	12638	25268	429832
Total	4170	417.88	68	128	1995	24968	49928	831832

TOTAL LOADINGS WITHOUT FAYETTEVILLE

	********	**********				********		
Above Frances	1644	178.84	482	539	3687	71922	96368	659329
Below Frances	2526	261.33	178	247	2892	46445	64536	546888
Total	4178	448.17	269	366	2748	118366	168895	1206137

TOTAL LOADINGS WITH FAYETTEVILLE

*******			*******	*****			********	
Above Frances	1644	187.28	425	568	4113	79518	104888	778315
Below Frances	2526	261.33	178	247	2092	46443	64536	546868
Total	4178	448.61	281	377	2936	125962	169335	1317123

PERCENT INCREASE DUE TO FAYETTEVILLE

Above Frances	1	4.72	5.59	3.86	11.57	10.56	8.76	16.83
Below Frances	ŧ.	1.16	1.0	8.00	0.00	8.80	8.68	8.88
Total		1.92	4.42	3.27	7.15	6.42	5.25	9.20
		′						

a - Martin Maner, Ark DPCE, 1986 STP Flows b - OKlahoma 208 Projection for 1985

c - Total Phosphorus Loading Estimate to the 111. River Basin, UESPA, Sept 1984

d - annual means, illinois river survey, storet, 1985-1986

e - assumed

f - phosphorus from Fayetteville discharge permit;

nitrogen = median value for plants practicing phosphorus removal (USEPA,1974) g - based upon review of monitoring data from non-point-source watersheds in basim

and higher density of urban and agricultural land uses in arkansas ws. oklahona portions

Table 7

٠.

Basinwide Mass Balance Calculations - Wet Year

WATER AND MASS BAL	TER AND MASS BALANCE CALCULATIONS		ILLINOIS R	IVER ABOVE	TENKILLER	DAN WE	T	HYDROLOGIC	YEAR	
POINT SOURCE DISC	ARGES			:	STP CONCEN	TRATIONS		STP LOAD	5	
		FLOW		FLOJ	Orth o P	total P	TOTAL N	ORTHO P	total P	TOTAL N
TREATMENT PLANT	STATE	ngđ		hn3/yr	\$pb	ppb	9pb	kg/yr	kg/yr	kg/yr
Prarie Grove	AR	\$.24	•	1.3 3	3975	4258	16888 e	1319	1576	5318
Springdale	AR	6.70	2	9.26	4289	4880	16280 d	38913	44472	159973
Rogers	AR	3.50	a.	4.84	4000	5388	19288 d	17361	25652	92926
Vatts	OK	4,47	Þ	0.10	3975	4758	16888 e	385	468	1549
Siloan Spring	AR	2.48	a	3.32	3998	4788	-جر 1984	J 12943	15598	\$973B
Gentry City	AR	1.21	a	0.27	3975	4758	16888 2	e 1154	1379	4646
Tahlequah	OK	2.69	ç	3.71	3888	4290	10500 d	14083	15565	38913
Lincola City	AR	8.45	ł.	0.57	3975	4758	16000 e	2254	2693	9871
Westville	OK	8.18	c	8.14	3975	4758	16888 e	558	657	2213
Indian Nations	OK	8.65	c	0.07	3975	4750	16888 e	275	328	1186
Sequoyah	0X	0.14	ъ	8.85	3975	4759	16989 e	192	238	774
Stillwell	ÓX.	0.24	c	1.33	3975	4758	16888 +	1319	1576	5318
Stillwell Cansery	OK.	0.12	¢	8.17	3975	4759	168 89 e	668	789	2655
TOTALS		16.76		23.17	4031	4798	16155	93466	118975	374385
TOTALS	AR	13.46		18.61	4088	4787	17288	75943	91371	321785
TOTALS	OK	3.29		4.56	3833	4383	11527	17463	19685	52520
TOTALS above Lake	Frances	19.44		14.44	4128	4966	17291	59592	71718	248329
TOTALS below Lake	Frances	6.31		8.73	3872	4498	14426	33815	39276	125976
Fayetteville		6.18	+	8.44	988	1900	13158 f	7596	8448	118986
			Ru	noff Rate =	1.73	n/yr				
NONPOINT CALCULATIONS WATERSHED		I	FLOW-WEIGH	ted concen	TRATIONS		LOADINGS			

NONPOINT CALCULATIONS	HATERSHED	1	FLOM-MEIGHT		LOADINGS			
	AREA ka 2	FLOW hn3/yr	artko p ppb	TOTAL P p\$d	TOTAL N ppd	ortho p kg/yr	total p kg/yr	total n kg/y r
Above Frances	1644	1200.12	75	158	2588 a	96889	188818	3849388
Below Frances	2526	1843.98	58	198	1466 g	92199	164378	3872871
Total	4178	3844.10	68	128	1995	182288	364416	6872371

TOTAL LOADINGS WITHOUT FAYETTEVILLE

	**********	***********	*********			*********	*********	*********
Above Frances	1644	1214.56	123	287	2675	147681	251718	3248629
Below Frances	2526	1852.71	68	121	1726	126814	223674	3196847
Total	4178	3867.27	98	155	2182	275614	475391	6446676

TOTAL LOADINGS WITH FAYETTEVILLE

Above Frances	1644	1223.00	129	213	2747	157197	269158	3359615
Below Frances	2526	1852.71	68	121	1726	126814	223674	3198847
Total	4170	3875.71	92	157	2132	283218	483831	6557662

PERCENT INCREASE DUE TO FAYETTEVILLE

±	*********	**********	********			*********	********	
Above Frances		0.69	4.35	2.64	2.78	5.88	3.35	3.42
Below Frances	1	0.80	8.88	4.88	0.08	0.48	1.88	8,88
Total	4	0.28	2.47	1.50	1.44	2.76	1.78	1.72
************************	*******	*********	*******				******	

a - Martin Maner, Ark DPCE, 1986 STP Flows b - OKlahoma 208 Projection for 1985

c - Total Phosphorus Loading Estimate to the 111. River Basin, UESPA, Sept 1984

d - annual means, illinois river survey, storet, 1985-1986

e - assuned

f - phosphorus from Fayetteville discharge permit;

mitrogen = median value for plants practicing phosphorus removal (USEPA, 1974)

g - based upon review of monitoring data from non-point-source watersheds in basin and higher density of urban and agricultural land uses in arkansas vs. oklahoma portions

Table 8

Comparisons of Loading Estimates Existing Conditions vs. 1974-75

COMPARISON OF LOADING ESTIMATES EXISTING CONDITIONS VS. 1974-1975

٠,

	WATERSHED	1	FLOW-WEIGH	red concen	TRATIONS		LOADINGS	
•	AREA	FLOV	ortho p	TOTAL P	TOTAL N	ortho p	total p	total N
	ka2	hn3/yr	ppb	ppb	ppb	kg/yr	kg/yr	kg/y r

EPA NATIONAL EUTROPHICATION SURVEY LOADING ESTIMATES (1974-1973) LOADS TO LAKE FRANCES Runoff Rate= .306 m/yr (Normalized)

Existing 1974-1975	1644 1644	517.50 519.00	188	284 163	2918 2559	97322	147159 84788	1585989 1328880
% lacrease	0.08	-8.29		74,69	13.73		73.58	13.40

EPA NATIONAL EUTROPHICATION SURVEY LOADING ESTIMATES (1974-1975) TOTAL LOADS TO BASIN Runoff Rate= .386 m/yr (Normalized)

**********		********				*******	*******	*****
Existing	4178	1299.19	131	283	2247	169784	263731	2919710
1974-1975	4179	1298		98	2290		127290	2855178
Z Increase	8.88	8.89		197.89	2.17		187.19	2.26
				****		• • • • • • • • • • • • • • • • • • •		

WALKER (1982) LOADING ESTIMATES (1974-1975) Renoff Rate = .6 m/yr (Sampled Conditions)					t	dads to te	KILLER FERR	iy reservo	IR
Existing		4178	2525.17	96	163	2125	243166	418495	5365295
1974-75		4178	2510.00	53	91	1983	133889	227688	· 4776940
Z Increase		8.30	9.69	88.54	79.21	11.64	81.63	89.29	12.32

FIGURES

1	Station Map
2	Illinois River Basin Elevation Profile
3	Time Series of Annual Mean Phosphorus Concentrations and Flows at Illinois River Stations
4	Comparison of Mean Nutrient and Chlorophyll-a Concentrations 1974-5 vs. 1985-6
5	Relationships between Total Phosphorus Concentration and Flow at Three Illinois River Stations, 1982-1986
6	Watershed Segmentation Used for Phosphorus Transport Calculations
7	Observed and Predicted Downstream Transport of Total Phosphorus in the Illinois River Basin
8	Station Locations, Tenkiller Ferry Reservoir, Corps of Engineer 1986 Survey
9	Mean Concentrations - Tenkiller Ferry Reservoir - 1986
10	Mixed-Layer Dissolved Oxygen Variations - Tenkiller Ferry Reservoir
11	Dissolved Oxygen and Temperature Contours - Tenkiller Ferry
12	Dissolved Oxygen and Temperature Profiles - Tenkiller Ferry
13	Relationship Between Areal Hypolimnetic Oxygen Depletion Rate and Mean Mixed-Layer Chlorophyll-a Concentrations - COE Reservoirs
14	Monthly Variations in Oxygen and Temperature at Longterm Monitoring Stations on the Illinois River, 1975-1986
15	Available Nutrient and Chlorophyll-a Concentrations vs. Watershed Runoff Below Lake Frances
16	Spatial Profiles - Illinois River Stations - August 1985-1986
17	Spatial Profiles - Illinois River Stations - August 1985-1986
18	Spatial Profiles - Illinois River Stations - August 1985-1986
19	Diurnal Variations in Stream Oxygen Concentrations - August 1985 Stations Separate

FIGURES (CT.)

- 20 Diurnal Variations in Stream Oxygen Concentrations August 1985 Stations Combined
- 21 Predicted Impacts of Fayetteville Discharge on Nutrient, Algae, and Transparency Levels in Lake Frances
- 22 Composition of Streamflow at Watts

٠

23 Percentage Increases in Nutrient Loading to the Illinois River Basin Resulting from Proposed Fayetteville Discharge

Figure 1

Figure 2 Illinois River Basin Elevation Profile

WATTS MEAN TOTAL PHOSPHORUS CONC, (PPB) SILOAM SPRINGS TAHLEQUAH HOUTH .0 + 1974

Figure 3 Time Series of Annual Mean Phosphorus Concentrations and Flows at Illinois River Stations

YEAR

YEAR

Figure 4 Comparison of Mean Nutrient and Chlorophyll-a Concentrations 1974-5 vs. 1985-6

LOG (TOTAL PHOSPHORUS CONCENTRATION, PPB

Figure 6 Watershed Segmentation Used for Phosphorus Transport Calculations

Figure 7 Observed and Predicted Downstream Transport of Total Phosphorus in the Illinois River Basin Average 1982-1986 Conditions

ILLINOIS RIVER MILE

Station Locations Tenkiller Ferry Reservoir Corps of Engineer 1986 Survey Figure 9 Mean Concentrations - Tenkiller Ferry Reservoir Surface Layer (0-12 ft), April-September 1986 Stations Identified in Figure 8.

۰.

mean =15e

Figure 10 Mixed-Layer Dissolved Oxygen Variations Tenkiller Ferry Reservoir 1986

DISSOLVED OXYGEN (PPM)

DISSOLVED OXYGEN - SATURATION (PPM)

Figure 11 Dissolved Oxygen and Temperature Contours Tenkiller Ferry Reservoir 1986 Near Dam Station (01)

DISSOLVED OXYGEN - SATURATION (PPM)

DEPTH (FEET)

DEPTH

Symbols: o = CE Reservoir + = Natural Lake, Zh > 2 m

DISSOLVED OXYGEN (PPM)

TEMPERATURE (DEC-C)

Figure 14 Monthly Variations in Oxygen and Temperature at Longerm Monitoring Stations on the Illinois River, 1975-1986

MIH24-M2

Q ILLINOIS RIVER BELOW LAKE FRANCES
 X LAKE FRANCES NEAR-DAM STATION (Threlkeld, 1983)

.

**-

ZAWIZ

ZOVOZ

Figure 18 Spatial Profiles - Illinois River Stations Total Phosphorus, Ortho Phosphorus, Organic Nitrogen (ppb) August 1985 vs. August 1986 Means

O A G N

O A T H O P

Ţ

6molf Deficitus

Figure 20 Diurnal Variations in Stream Oxygen Concentrations August 1985 Stations Combined

Figure 21 Predicted Impacts of Fayetteville Discharge on Nutrient, Algae, and Transparency Levels in Lake Frances

.

FLOW REGINES: 7-0-2 = 82 CFS = 1.8 INVYR LOU = 183 CF5 = 3.9 INVYR NEAN = 578 CFS = 12.4 INVYR

ORSERVED NEAN DOLINSTREAM OF LAKE AT WATTS (1982-1986) PREDICTED - EXISTING LOADS PREDICTED - EXISTING LOADS + FAYETTEVILLE PREDICTED - P CONTROLS ON EXISTING LOADS (1 MG/L) PREDICTED - P CONTROLS ON EXISTING LOADS (1 MG/L) + FAYETTEVILLE PREDICTED - MON-POINT LOADS ONLY PREDICTED - MON-POINT LOADS + FAYETTEVILLE

Composition of Streamflow at Watts

(EFFLUENT FLOW / TOTAL FLOW) % 100%

Figure 23 Percentage Increases in Nutrient Loading to the Illinois River Basin Resulting from Proposed Fayetteville Discharge

APPENDIX A

Mean Concentrations by Station and Flow Regime

Illinois River Long-Term Monitoring Stations October 1981 - September 1986

SS = Illinois River above Lake Frances (104)
WA = Illinois River, USGS Station Near Watts, Below Frances (106)
FC = Flint Creek Near Kansas (T04)
TQ = Illinois River, USGS Station Near Tahlequah (I12)
BF = Baron Fork Near Eldon (T05)
GO = Illinois River, USGS Station Near Gore, Below Tenkiller (I16)

Station Locations and Data Sources Identified in Figure 1 and Table 1

Stations SS and WA supplemented with data from EPA Clean Lakes Study, 1981-1982, Above and Below Lake Frances, (Threlkeld, 1983)

	Unit Rungff	Frequency *
Flow Regime	(cfs/mi ²)	(% of Daily Mean Values)
Low	< .45	48.2%
Medium	>= .45, < 1.8	38.9%
High	>= 1.8	12.9%

* Frequencies Based upon October 1981 - March 1986 Flow Record

Mean Annual Discharge at Tahlequah = $867 \text{ cfs} = .90 \text{ cfs/mi}^2$

A-1

(ваа) т-тинасиотно

A SUSAN SUSAN SA

Li

SS WA FC TO BF GO

A-2

8-₹

TOTAL NITROGEN (PPB)

٠

A-4

(644) NECOSUN VINONINY

ς-∀

NONVOLATILE SUSPENDED SOUDS (PPM)

VOLATILE SUSPENDED SOUDS (PPM)

WW

IMPACTS OF PROPOSED WASTEWATER DIVERSION ON EUTROPHICATION AND RELATED WATER QUALITY CONDITIONS IN THE ILLINOIS RIVER, OKLAHOMA

i

AMENDED TESTIMONY

prepared for

State of Oklahoma Office of Attorney General 112 State Capitol Oklahoma City, Oklahoma 73105

Ъy

William W. Walker, Jr., Ph.D. Environmental Engineer 1127 Lowell Road Concord, Massachusetts 01742 617-369-8061

February 1987

In reviewing mass-balance calculations contained in my previously submitted testimony, I have discovered an error in the sewage effluent nutrient levels used to construct mass balances (Tables 3-8). In transferring measured concentrations for Springdale, Rogers, Siloam Springs, and Tahlequah from one spreadsheet to another, I had mistakenly copied mean values for August 1985 (period of the EPA intensive survey), instead of mean, 1985-1986 values. Direct measurements of total nitrogen concentrations in the Fayetteville discharge have also been located (USEPA,1977). Corrected Tables 3-8 and dependent Figures 21 and 23 and page 24 are attached. These small numeric changes do not influence conclusions stated in my testimony.

REFERENCE

U.S. Environmental Protection Agency, "Report on Beaver, Table Rock, and Bull Shoals Reservoirs", Working Paper No. 480, National Eutrophication Survey, Corvallis Environmental Research Laboratory, February 1977.

Table 3

Lake Frances Mass-Balance / Eutrophication-Response Calculations Without Fayetteville Discharge

LAKE FRANCES MASS-E	BALANCES / I	EUTROPHIC	ATION RE	esponse o	ALCULATI	ans	NITHOUT	FAYETTEV	ILLE DIS	CHARGE
CASE		i	2	3	4	5	8	7	8	9
HYDROLOGIC CONDITIO	n	7-0-2	เณี	HEAN	7-0-2	LOU	HEAN	7-0-2	101	NEAN
FAYETTEVILLE		00	no	99	80	0.0	· ng	00	10	LQ :
OTHER POINT SOURCES	3	ezist	exist	exist	p=1888	p=1000	p=1988	40	80	04
NORDATE COURCE CH		~~								
RUNPUINT SUUKLE UNF	IKHLIEKIJII	6 # # JE					4 99			1 22
KURDIT Managlah Tahat D	∎/¥r	8.843	4.1	9.3Z	1.143	8.1	8.32	698.V	100	123
Nonpoint Intel P	ppo .	10	145	106	68	198	. 100 75	60 /1	111	191
Nonpolat Urtau P	ppo anh	1000	1/00	2583	1089	1/60	2518	1848	1/10	2510
Nee-Alest Tuekidity	ypu • 1 /m	1110	1 1000	1 2	1948	1005	1 2	1 0	1000	1.2
nen miðst terntetri	1.14		•	1+4	•.•	•	1.1		•	
POINT SOURCE CHARAC	TERISTICS	•								
Existing Flow	hn3/yr	14.4	14.4	14.4	14.4	- 14.4	- 14.4		•	
Total P	ppb	7918	7818	7018	1488	1444	1898			
Ortho P	ppb	6147	6147	6147	988	988	988	•		
Tolal H	ppb	23846	23846	23846	23846	23846	23846			
Fayetteville Flor	la3/yr									
Total P	bbp.	•								
Ortho P	ppb									
Total N	ppb	•								
	049.575									
Descisitation flow	112/16	2.11	2.11	• //	2.11	9.21	• A	2.13	24	`2 JI
NonDoint Etma		72 01	114 24	\$75 57	79 01	144 24	525 57	71 01	12.01	525.57
Point Fine		14 40	101.21	14 48	14 45	101.21	18 44	4.99	8.48	L.R1
Frundfauille Fire		11110			4 44	17,78	11,11	4 60	0.00	
Total Inflag		Ct 07	101.25	517 50	02 07	101 25	543 50	7/ 57	111 95	52R 1R
Funnestion		14116	191.123	4 07	4 47	191163	J16.J0	4 47	1 47	4 87
Belilar		61.05	177 /0	510 51	1447	177 10	510 KI	79.45	1/9 70	574 11
		90.03	1//.19	130131	001CJ	117.10	339-31	74.73	102110	261.11
PHOSPHORUS BALANCE	(KG/YR									
Precipitation Load	,	19	19	67	69	63	19	69	69	69
NeaPoint Load		5913	14474	72835	5913	1/424	78935	5913	16424	78835
Point Load		tätase	141859	101859	14468	14489	14444			
Favetteville Load										
Total Load		\$97841	117553	179944	29392	31873	93395	5982	16493	78985
Sedimentation		52642	34946	18558	4754	4336	6757	1838	2841	5723
Outflow		54484	82687	161486	15628	26557	86547	4952	14432	73182
NITROGEN BALANCE	KE/YR ·									
Precipitation Load		4628	4628	4628	4628	4621	4621	4620	4628	4528
NcaPoint Load		73988	262784	1313920	7398B	262784	1313720	73988	282784	131392
Point Lord		343382	343382	343382	3(3382	343382	343382			
Fayetteville Load		******								
LOIZS LOID		421918	610/86	1661922	421914	611786	1661922	78528	24/484	1318243
Sectmentation		123548	96189	181587	123549	96187	111587	9270	25888	68749
VULTION		XX8301	214238	1294333	278303	214218	1291332	47758	292329	1247771
RESPONSE CALCULATIO	NS									
Residence Time	YPS .	0.0319	8.8156	8.8851	8.8319	8.8156	8.1951	. 1.1383	8.8178	0.0053
Inflow P Conc	ppb.	1232	663	334	235	174	173	83	101	151
1-Rp		0.518	1.713	1.897	1,767	9,8/3	1.928	8.828	1,875	8.927
Inflow N Conc	"ppb	4858	3447	3895	485B	3447	3184	1184	1643	2516
1-Rn		\$.797	1.843	6.939	4.797	1.843	1,939	8,882	1.916	8.948
				_		_		_	_	
latal Phosphorus	O pb	626	466	301	184	158	161	68	87	148
iotal Nitrogen	bbp	3435	2984	2897	3435	2704	2897	956	1489	2385
Potential Chia	ppb	368	277	235	182	143	153	- 41	65	123
Rean Chierophyll-a	ppb	75.1	44.6	14.0	59.9	36.5	13.0	25.1	26.3	12.8
ərcch) Multalır	bbp	1.37	1. 47	1,65	F. 44	1,52	\$.66	0.70	1.61	1.66
₩ ₩ ₩₩	bbo	ə.2	5.9	9.2	18.3	18.4	17.1	11.0	15.1	19.8

Constant Factors: Untershed Area = 1642.4 km2, Precipitation = 1.13 m/yr, Evaporation = 1.76 m/yr Ainospheric P Load = 38 kg/km2-yr, Almospheric N Load = 2008 kg/km2-yr. Reservoir Hean Depth = 1.2 m, Area = 2.31 km2

• ·

Table 4

Lake Frances Mass-Balance / Eutrophication-Response Calculations With Fayetteville Discharge

LAKE FRANCES MASS-E	ialances /	EUTROPHIC	ATION RE	sponse c	ALCULATI	ons	WITH FAY	ETTEVILLI	E DISCHA	RGE
CASE		(1)) 11	12	(13) 14	15	16	17	18
HYDROLOGIC CONDITIO	N	2.0.2	LOW	hean	2-0-2	/ L04	hean	7-9-2	LON	hean
FAYETTEVILLE		yes 	yes	yes	775	yes	¥25	yes	yes	yes
OTHER POINT SUDKLES	I	erist	exist	exist	b=1448	b=1110	b=taad	40	no	ng
NORPOINT SOURCE CHA	RACTERISTI	CS								
Runoff	a/yr	Ú.145	4.1	1.32	1.845	1.1	8.32	8.845	0.1	8.32
Nonpoint Total P	ppb	88	198	158	88	100	158	60	100	158
Nonpoint Ortho P	<u>ppb</u>	- 41	51	75	- 40	50	75	40	50	75
Nonpolat lotal N	ppD 1/-	1000	1918	2588	1830	1988	2510	1436	1693	2501
Non-Hight Cordinity	1/4	•.a	+	1.2	1.8	1	1.4	4.5	•	1.2
POINT SOURCE CHARAC	TERISTICS									
Existing Flow	la3/yr	16.4	14.4	11.1	11.4	14.4	14.4			
Total P	ppb	791B	7018	7418	1960	1198	1000			
Or the P	ppb	6147	6147	6147	. 988	999	988			
Total N	ppb	23846	23846	23946	23846	23846	23846			
Talal B	has/yr	8.44	8.44	8.44	¥.44	8.99 1880	5.44	5.44 5000	8,44 1845	5.44
icili r Antho P	abo.	1940	1444	608	000	008	Con Tead	1000	L684 088	1000
Total N	ppb	14125	16125	14125	14125	14125	14125	16125	14125	14125
	***	10120	10120			14120				
water balance	HH3/YR									
Precipitation Flow		2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61
NonPoint Flow		73.91	164.24	525.57	73.91	164.24	525.57	73.91	164.24	525.57
Point Flow		14.4	14.48	14.48	14.40	14.49	14.40	0.00	8.88	1.68
Fayetleville Floe		8.44	8.44	8.44	8.44	8.44	8,44	8.44	, 8.44	B.44
Total Inflow		99.36	189.69	551.02	99.36	189.49	551.\$2	84.96	175.29	536.62
Evaporation		4,17	4,17	4.87	4.17	4.87	4.47	4.J7	4,87	4.47
Outflow		95.29	105.62	546.95	95.29	165.62	546.95	89.67	171.22	532.55
PROSPHORIES BALANCE	INC.NP									
Precipitation Load	THAT IN	-76	49	63	43	69	43	49	69	69
NonPolat Load		5913	16424	78835	5913	16424	78835	5913	16424	78835
Point Load	••	101059	191859	101059	14490	14498	14411-	· •		1
Fayetteville Load		8449	8448	6449	B440	8448	8449	8448	8440	8448
Total Load		115485	125993	188484	28822	37333	• 181745	14422	24933	87345
Sedimentation		55843	36984	19497	7324	5986	7416	3143	3311	6313
Outflow		68439	87889	166917	21498	3342 B	94328	11379	21623	81932
NITRIGEN BALANCE	VC/VD -									
Precinitation Load	NW IA	1179	41.98	4228	4128	4175	4178	4124	4428	41.78
NonPoint Load		73988	242784	131392	73788	262784	1313920	73799	262784	1313920
Polat Load		343382	343382	343382	343382	343382	343382			
Fayetteville Load		136875	136995	136895	136175	136995	136895	136895	136895	134895
Total Load		558845	746881	1798017	558985	746881	1798017	214623	483499	1454635
Sedinentation		\$73198	127474	114669	173198	127474	114669	45321	48792	88531
Oulfiow		384815	619408	1683349	384815	619408	1683349	-169312	354787	1374104
RESPONSE CALCULATIO	245									
Residence Tine	775	0.8291	8.9149	1.0651	8.8291	0.1149	0,0851	0.0343	0.0162	1.1152
Inflow P Conc	ppb	1212	679	344	392	212	186	178	145	164
1-Rp		8,523	8.786	ŧ.897	\$.745	8.858	1.927	8.787	1.867	1.928
Inflow N Conc	\$pb	5856	4824	3287	5856	4824	3287	2653	2357	2731
1-Rn		E.490	8,829	6. 936	8.698	\$.829	8.936	\$. 787	8.879	8.945
Tatzi Phasabanus	anh	134	808	520	997 -	/ 104	175	141	197	152
Total Nitrogen	pob	4138	3337	3878	4139	3227	3879	2893	2977	2528
Potential Chla	200	434	325	252	241	199	1.47	115	105	138
Nean Chlorophyll-a	apb	75.2	44.7	13.8	64.8	38.4	13.0	49.3	32.7	12.9
Setchi	spb	1.37	8.47	1.65	1.42	\$.51	1.66	1.49	1.55	1.66
(ti-158)/P	ppb	6.1	6.6	9.5	17,2	17.7	17.1	13.8	15.2	16.\$

Constant Factors: Watershed Area = 1642.4 km2, Precipitation = 1.13 m/yr, Evaporation = 1.76 m/yr Atmospheric P Load = 30 kg/km2-yr, Atmospheric N Load = 2000 kg/km2-yr Reservoir Hean Depth = 1.2 m, Area = 2.31 km2

Table 5Basinwide Mass Balance Calculations - Average Year

. . .'

.

'

POINT SOURCE DISCH	ARGES			STP CONCENT	RATIONS		STP LOADS			
TREATHERIT PLANT	STATE	FLC4 Mgđ	FLC4 bn3/yr	ORTHO P Ppb	TOTAL P ያዋኒ	TOTAL N ppb	ortho P kg/yr	total p kg/yp	TOTAL N Kg/yr	
Pracie George	48	1.71	1.29	5225	X KIAR	19115 .	1517	1771	\$551	
Springdale	AR	6.70	9.26	6211	6900) 23698 d	57443	63928	218654	
Rogers	AR	3.50 a	4.64	1115	231	24698 d	29523	35331	119062	
Vatis	0K	E.17 L	6.19	\$225	6118	19115 e	586	598	1858	
Siloan Spring	AR	2.41 a	1 3,32	4618	6100	17169 d	15266	19913	56951	
Gentry City	AR	6.21 1	1 1.27	5225	6144	17115 •	1517	1771	2001	
taaleguan timeete fiim	UK AD	Z.08 (J./1	4868	4288	10115 0	14824	2460	4113/	
CINCOIN CILY Daefuilla	14K 112	8,13 i 8,18 i	L 8.37	2002	0110 2144	10115 4	2702	844	10001	
Arslyffir Tadian Natione	OF OF	8 45 A	. E.J.1	3223 5225	0115 2188	10115 .	743	422	1377	
Securvah	OK	1.11		5225	Z113	19115 +	253	295	925	
Stille]}	OK .	t.24 c	1.33	5225	4111	17115 +	1734	2824	6344	
Stillweit Cannery	ÛK	1.52 0	1.57	5225	6198	19115 •	867	1912	3172	
			• -							A A
TOTALS		18.73	23,13	5513	6353	28495	127497	146927	473998	E1
TOTALS	ar	13.43	18.57	5828	6794	22433	1\$8238	126174	416685	- ML I
TOTALS	OX	3.30	4,56	4229	4555	12596	19268	28753	57393	[]ov . 40
TUTALS above Lake (Frances	10.41	14.40	8147	7018	23846	89484	181031	343266	1 [°] , a 5 ^{°°}
TOTALS below Lake I	Frances	6.32	8.73	4468	5258	14971	37014	45876	130732	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fayetteville		6.10 (F 8.44	988	1888	16125 f	7596	8448	136895	
······································	,	kn2	ha3/yr	ppb	ppb	ppb	kg/yr	kg/yr	tg/yr	(hampageo
ibove Frances 📡		1644	526.48	· 75	150	2588 g	39456	(78912)	1315288	201 Wild a
Below Frances		2526	898.32	59	119	1666 9	· 48416	81932	1346661	20 aq34 K
[ota] 		4171	1334.48	68 	120	1775	79872	159744	2661861	= 41,0
IOTAL LOADINGS WITH	HOUT FAY	ETTEVILLE	•						The	elheld cool
Above Frances	******	1644	548,48	237	333	3869	127948	(17994)	1658466	
Below Frances		2526	817.85	97	155	1888	79430	128728	1477393	
lota)		4170	1357.53	153	226	2318	20,7369	386671	3135859	
total Loadings with	H FAYETT	EVILLE								
Above Frances		1644	548.92	247	343	3269	135536	188393	1794561	
Below Frances		2526	817.05	. 97	155	1818	79430	126728	1477393	
10t3l 		4178	1385.97	157	231	2395	214965	315111	32/1954	
PERCENT INCREASE D	UE TO FA	YETTEVILLE				-				
Above Frances		ļ	1.56	4.31	3,49	8.51	5.94		8.21	
Bellow Frances		!	1.11	1.11	1.11	1,11	1.11	1.11	0.08	
	•	1 	1.62	3.62	2.12	3.7\$	3.66	2.75	4.34	. d
z - Hartin Maner	Art NPri	. 1984 «T P	Flaut						. F	6 (6
b - Oklabona 208 P	røjectio	a for 1985						- A	4	
c - Total Phosphor	us Loadi	ng Estinal	e to the III.	River Basi	in, UESPA.	Sept 1984		HAIL		
								·		

and higher density of urban and agricultural land uses in arkansas us. oklahooa portions

.

.

Table 6

Basinwide Mass Balance Calculations - Dry Year

WATER AND MASS BALA	NCE CALCI	RATIONS	ILLINOIS R	iver above	TOXILLER	Dan	DR1	Y H	NDROLOGIC	YEAR
POINT SOURCE DISCH	RGES			STP CONCEN	RATIONS			STP LOADS		
		FLOA	FLOY	ORTHO P	TOTAL P	TOTAL N		ortiko p	TOTAL P	total n
treathent plant	STATE	ngð	ba3/yr	ppb	ppb	ppb		kg/yr	kg/yr	Kð/AL
Prarie Grove	AR	t.21 a	0,29	5225	1016	19115	•	1517	1771	5551
Springdale	AR	6.78 2	9.26	6288	6788	23588	đ	\$7443	63928	218654
Rogers	AR	3.50 a	4.64	6198	7388	24689	đ	29523	35331	119862
Vatts	DK	#.#7 b	1.11	5225	6188	19115		586	578	1858
Siloan Spring	AR	2.48 a	3.32	4688	6282	17160	đ	15266	19913	56951
Gentry City	AR	1.21 a	1.29	\$225	6188	19115		1517	1771	5551
Tahleguah	0X	2.68 c	3.71	4883	4200	11100	d	14924	15565	41137
Lincola City	AR	. 1.(J a	0.57	5225	6100	19115	i e	2962	3458	18837
Vestville	0X	1.18 0	F.14	5225	6188	1911	i e	723	844	2643
Indian Nations	OX	0.15 c	4.97	5225	6188	[9][1	Ē	361	422	1322
Sequoyah	OK	8.14 5	1,15	5225	6188	19115	i e	253	295	925
Stillarll	ÛK	1.24 c	i 1.33	5225	6188	19113	i e	1734	2024	6344
Stillwell Caanery	OX	0.12 c		5225	6111	1911	5.0	867	1812	3172
TOTALS		16.73	23.13	5513	6353	2849	5	127497	146927	473998
TOTALS	AR -	13.43	18.57	5828	6794	2243	3	108238	· 126174	416685
TOTALS	ÛK	3.39	· 4.56	4229	4555	1259	\$	19268	21753	57393
TOTALS above Lake	Frances	18.42	14.40	6147	7818	2384	\$	88484	191931	343266
TOTALS below Lake	Frances	6.32	8.73	4468	5256	1497	t	39814	45896	138732
Fayetteville		6.18 f	8.44	988	1000	1612	5 f	7596	8440	136195

NONPOINT CALCULATIONS	Rai WATERSHED	noff Rate =	I.I (Flou-veisk	n/yr Ted Concen	IRATIONS		LCADINGS	
	AREA Ita2	FLOU ba3/yr	ortha p ppb	TOTAL P ppb	TOTAL N PPD	ortho P tg/yr	TOTAL P Xg/yr	total n Xg/yr
Above Frances	1644	164,48	75	158	2588 g	12338	24668	411999
Below Frances	2526	252.6	51	111	1666 0	12638	25268	429832
Totat	4178	417.88	68	120	1995	2496	49928	831832

TOTAL LOADINGS WITHOUT FAYETTEVILLE

******************	*	******	****					********
Above Frances	1644	178.60	564	783	4219	199814	125891	754266
Below Frances	2528-	261.33	198	272	2111	51644	71158	551563
Total	4171	448.13	346	447	2967	152457	196947	1315838
				`	:			
TOTAL LOADINGS WITH FA	YETTEVILLE	_						
Above Frances	1644	187.24	579	716	4755	108413	134131	878361
Below Frances	2526	281.33	178	272	2111	51644	71156	551563
Total	4170	448.57	357	458	3215	. 148953	205207	1441925

PERCENT INCREASE DUE TO FAYETTEVILLE

Above Frances		4.72	2.69	1.91	12.72	7.53	6.1		
Below Frances	i	1.12	1.11	9.86	1.11	6.80	1.11	1.00	
Total	1	1.92	3.81	2.33	8.34	4.98	4.29	18.42	
 a - Hartin Haner, Ark DPCE, b - Oklahona 203 Projection c - Total Phosphorus Loadin d - annual means, illinois 	1986 STP Flo for 1983 Ig Estimate to river survey	ous a the 111. S a storet, 15	River Basin 185-1996	, UESPA,	Sept 1984		Adr	CHE	6%

e - assumed, based upon average conc of sampled sources (d) f - phosphorus from Fayelteuille discharge permit;

average total m in fayettéville discharges epa nat. eutro. survey, 1975 9 - based opon review of monitoring data from non-point-source watersheds in basim and higher density of urban and agricultural land uses in arkansas ws. oklahoma portions

Table 7

.

Basinwide Mass Balance Calculations - Wet Year

WATER AND MASS BAL	rrice cali	WLATIONS	ILLINGIS R	IVER ABOVE	TDIKILLER	dah wa	5	HYDROLOGIC	YEAR
POINT SOURCE DISCH	ARGES		\$	TP CONDI	RATIONS		STP LOADS		
		FLOU	FLOW	ortho p	TOTAL P	Total N	ORTHO P	TOTAL P	TOTAL N
TREATHONT PLANT	STATE	ngđ	ha3/yr	ppd	b bp	b bp	kg/yr	kg/yr	Kg/yr
Prarie Grove	AR	8.21 a	1.29	5225	6119	19115 e	1517	1771	5551
Springdale	AR	6.78 a	9.28	6298	6788	23688 đ	57443	63928	218654
Rogers	AR	3.58 a	4.84	6118	7319	24698 d	29523	35331	119862
Watts	0K	0.07 b	1.11	5225	6188	19115 e	586	598	1850
Siloan Spring	AR	2.4 a	3.32	4688	6889	i 17169 d	15264	19913	56951
Gentry City	ar	8.25 a	1.29	5225	6188	19115 e	1517	1771	5551
Tablequab	OK	2.68 c	3.71	4111	4289	11188 d	14824	15565	41137
Lincoln City	AR	- 1.0 z	8.57	5225	6100	19113 e	2962	3458	11937
Westville	CK	l'it c	• 8.14	5225	6148	19115 e	723	844	2643
Indian Nations	CK	1.45 c	1.97	5225	6118	19115 e	361	422	1322
Sequoyah	OX .	E.14 b	0.05	5225	6188	19115 e	253	295	925
Stillwell	OX .	8.24 c	¢.33	5225	6111	19115 e	1734	2024	6344
Stillwell Cannery	CX	1,12 c	0.17	5225	6148	19115 e	847	1812	3172
TOTALS		16.73	23.13	5513	6353	28495	127497	146927	473998
TOTALS	RA	13.43	19.57	5828	6794	22433	198239	126174	416695
TOTALS	0X	3.38	4.56	4229	4555	12598	19268	21753	57393
TOTALS above Lake i	Frances	18.40	14.49	6147	7818	23846	88484	- 181831	343266
TOTALS below Lake	Frances	6.32	8.73	4468	5254	14971	37814	45896	138732
Fayetteville		6.19 f	8.44	988	1080	16125 f	7596	8448	136195
NOPOINT CALCULATI	QHS I	ATERSKED AREA ka2	fLCU hn3/yr	FLOU-WEIGKI ORTHO P PPD	TED CONCENT TOTAL P ppb	TRATIONS TOTAL N ppb	ORTKO P Kg/yr	LOADINGS TOTAL P ¥9⁄7t	total n kg/yr
Above Frances		1644	1200.12	75	150	2588 g	98889	189918	3988388
Below Frances		2526	1843.98	58	100	1666 g	92199	184378	3972071
Total		4178	3044.10		120	1995	- 182249	364416	6872371
TOTAL LOADINGS WIT	'Kout fay	ETTEVILLE .							
Above Frances		1644	1214.52	147	231	2753	176493	281849	3343566
Below Frances		2526	1852.71	71	124	1729	131213	238294	3212802
Total		4178	3967.23	111	167	2134	389785	511343	6546369
TOTAL LOADINGS WIT	ik fayett	EVILLE							
Above Frances		1644	1222.96	152	237	2845	184869	287487	3479661
Below Frances		2526	1852.71	71	124	1729	131213	238294	3282882
Total		4170	3875.67	[1]	167	2173	<u>917301</u>	519783	6682464
PERCENT INCREASE D	NE TO FA	ETTEVILLE							
PERCENT INCREASE D Above Frances	NE TO FA	ETTEVILLE		3.54	2.29	3.35	4.24	3.88	4.87
PERCENT INCREASE D Above Frances Below Frances	NE TO FA	TETTEVILLE 1	\$.69 \$.89	3,54 8,88	2.29	3.35 F.AD	4.26 1.88	3.18 8.88	4.87 8.11

a - Martin Haner, Ark DPCE, 1986 STP Flows b - Oklahona 208 Projection for 1985

c - Total Phosphorus Loading Estimate to the II1. River Basin, UESPA, Sept 1984 d + annual means, Illinois river survey, storet, 1985-1998

e - assumed, based upon average conc of sampled sources (d)

f - phosphorus iron Fayetteville discharge permit; average total m in fayetteville discharge; epa mat. eutro. survey, 1975

g - based upon review of monitoring data from non-point-source watersheds in basia and higher density of urban and agricultural land uses in arkansas vs. extanona portions

.....

.

Table 9Comparisons of Loading EstimatesExisting Conditions vs. 1974-75

EXISTING CONDITIONS VS. 1974-1975

COMPARISON OF LOADING ESTIMATES

	WATERSHED	ſ	LCU-VELCKI	ED CONCEN	TRATIONS		LOADINGS	
	AREA ka2	FLOU ha3/yt	ORTHO P ppb	TOTAL P ppb	TOTAL N ppb	ORTHO P Kg/yr	total p kg/yt	total i kg/yi
EPA NATIONAL EUTROPH Runoff Rate= .386 m/	ICATION SURVEY LOAD 'ye (Normalized)	ing estimat	(ES (1974-)	1975)	Loads to lai	ie frances		
Existing 1974-1975	1644 1644	517.5 519.0	244	341 . 163	3894 2559	126213	176491 84788	169892 132840
% Increase	1.11 -	-8.31		188,79	28.91		188.17	29.5
EPA NATIONAL EUTROPH Runoff Rate= ,386 m/	IICATION SURVEY LOAD yr (Normalized)	NING ESTIMAT	TES (1974-)	1975)	TOTAL LOADS	TO BASIN		
EPA NATIONAL EUTROPH Runoff Rate= .386 m/ Existing 1974-1975	IICATION SURVEY EDAL yr (Normalized) 4178 4178	1299.1 1298.0	TES (1974-) 	1975) 231 98	TOTAL LOADS 2324 2218	TO BASIN 293875	299682 127298	3819493 285519(

WALKER (1982) LOADING E Runoff Rate = .6 m/yr	LOADS TO TENKILLER FERRY RESERVOIR							
Existing 1974-75	4178 4178	2525.1 2518.8	11# 53	177 91	2164 ° 1983	277257 13388¢	446447 227688	5464988 4776948
Z Increase	8.88	1.61	195.85	94.91	13.72	187,89	96.89	14.4

Figure 23 Percentage Increases in Nutrient Loading to the Illinois River Basin Resulting from Proposed Fayetteville Discharge

CORRECTED 2/6/67

meters/yr) has been used as an example of a dry hydrologic year. Under this condition, the Fayetteville discharge would increase the annual loadings of total phosphorus and nitrogen to Lake Frances by 6.7% and 18.0%, respectively, vs. 4.7% and 8.2% under average flows. Total phosphorus and nitrogen loadings to Tenkiller Ferry Reservoir would increase by 4.3% and 10.4%, respectively, during a dry year and by 2.8% and 4.3% during an average year. Regardless of their precise magnitudes, these increases are unacceptable in view of the fact that Oklahoma's water quality standards are already being violated due to excessive nutrient enrichment.

Table 8 compares loading estimates under existing conditions with estimates developed previously based upon 1974-1975 monitoring data collected by the EPA National Eutrophication Survey (1977a,b). The ' EPA/NES calculated loadings to Lake Frances and to Tenkiller Ferry for an "average hydrologic year" (basin runoff=.3 m/yr). Using the same EPA/NES data set, Walker(1982) calculated loadings to Tenkiller Ferry for 1974-1975, when runoff was relatively high (.6 m/yr). The loading estimates for existing conditions in Table 8 are based upon the same methodology employed in Tables 5-7, with runoff rates adjusted in each case to conform to the 1974-1975 estimates. The comparisons indicate 6-21% increases in nitrogen loading, as compared with 96-135% increases in phosphorus loading over this period. These results are generally consistent with the observed increased eutrophication in the reservoir and river segments discussed previously and further suggest that point sources have been primarily responsible for these increases.

CONCLUSIONS: IMPACTS OF DIVERSION ON OKLAHOMA WATER QUALITY STANDARDS

The addition of nutrient loadings from Fayetteville would cause increases in nutrient and algal concentrations in Lake Frances, the Scenic River below Lake Frances, and in Tenkiller Ferry Reservoir. The monitoring data reviewed above indicate that these segments are already severely impacted by nutrient loadings from the upper watershed. The watershed is simply too small to provide sufficient dilution of the

IMPACTS OF PROPOSED WASTEWATER DIVERSION ON EUTROPHICATION AND RELATED WATER QUALITY CONDITIONS IN THE ILLINOIS RIVER, OKLAHOMA

REBUTTAL TESTIMONY

prepared for

State of Oklahoma Office of Attorney General 112 State Capitol Oklahoma City, Oklahoma 73105

by

William W. Walker, Jr., Ph.D. Environmental Engineer 1127 Lowell Road Concord, Massachusetts 01742 617-369-8061

February 1987

1. Assimilation of Phosphorus Load above Lake Frances.

Dr. Blanz (Page 8) indicates that 70-75% of the phosphorus currently being added to the river is being assimilated before it reaches Lake Frances and Oklahoma. Supporting data, assumptions, and calculations are absent from his testimony.

This statement conflicts with results of detailed mass balances described in my testimony (Walker, 1987, pp. 8-11, Figure 7), which show that most point and nonpoint phosphorus loadings discharged into the Illinois River and its tributaries in Arkansas are not assimilated in the upper river reaches, but are transported to Lake Frances and, eventually, to Lake Tenkiller.

Over long time scales, phosphorus is unlikely to be trapped or removed in stream segments, except under special circumstances (e.g., seasonal overflows onto large flood plains leading to nutrient deposition and/or uptake up by terrestrial plants). Organic materials (BOD) can be removed from the water column by microbial decay or by sedimentation. Phosphorus may be cycled between inorganic and organic forms, but it does not "decay" and can only be removed from the system by sedimentation. While some algal uptake and deposition may occur in the stream channel on an intermittent basis, deposited materials are scoured and transported downstream during high-flow events. Generally, longterm accumulation of phosphorus can occur only in impoundments or lakes where bottom sediments are isolated from scouring velocities. Based upon application of a phosphorus retention model developed for reservoirs (Walker, 1985), deposition of 70-75% of the point-source loading above Lake Frances would require an impoundment with at least 4 times the volume of Lake Frances. Such an impoundment does not exist on the River above Lake Frances.

Stream surveys (Threlkeld, 1983), Gakstatter and Katko 1986, Chlorophyll-a plot Page A-2, Walker, 1987) indicate that little algal or periphyton growth occurs in the river above Lake Frances, even under

low-flow conditions. This further decreases the probability that significant phosphorus retention occurs above Frances.

2. Unequal Distribution of Study Effort between White and Illinois Rivers.

The proposed diversion would involve a 50/50 split between the Illinois River and White River Basins. It is clear from the testimonies of Mr. Bondy and Dr. Blanz that the levels of technical effort (monitoring, modeling) which have been expended in evaluating the water quality impacts in each basin are far from equal. The White River has been emphasized. Projections of water quality impacts on Clear Creek, Mud Creek, and Illinois River are subjective, uncertain, and unacceptable.

Mr. Bondy (p. 1) indicates that "the ADPC&E analysis was an uncalibrated (emphasis mine) D.O. model based upon a dye study performed on Mud Creek and Clear Creek just below Mud Creek, and upon literature based model kinetics". "Literature based model kinetics" means that d'd /// model coefficients have been selected from wide ranges of feasible 2^{α_s} . A values. This approach is This approach is very subjective and risky. It is acceptable Org^{α} preliminary impact analyses. values. only for preliminary impact analyses. Final impact analyses used to support wastewater management decisions of this magnitude should be based upon models which have been calibrated and verified with sitespecific field data on the relevant water quality parameters.

Mr. Bondy's testimony focuses exclusively on oxygen and does not address the more important issue of phosphorus, the effects of which are transported over much longer distances and time scales, as compared with carbonaceous or nitrogenous biochemical oxygen demand.

3. Ecological Carrying Capacity.

Dr. Blanz, in discussing the rationale for spit flow, states (p. 4): "It was the Department's position that waste generated in one basin

should not be transferred to another, rather the ecological carrying capacity of each basin should naturally dictate the ultimate loading and, therefore, growth and land use in that basin."

This approach to wastewater management is constrained by required compliance with water quality standards. Observed violations of Oklahoma's water quality standards for the Illinois River indicate that the "ecological carrying capacity" of the basin has already been exceeded. These violations result primarily from Arkansas point-source discharges, which account for 16% of the flow and 94% of the phosphorus loading leaving Lake Frances under summer low-flow conditions (Walker, 1987).

According to Dr. Blanz's rationale, then, the "ultimate loading, growth, and land use" have already been exceeded. This should put a stopper on the proposed Fayetteville discharge, as well as on any future growth in the basin, unless Dr. Blanz's definitions of "basin" and "ecological carrying capacity" do not cross state boundaries.

4. Phosphorus Loading Calculations.

Mr. Champagne presents phosphorus loading calculations for various sources in the Illinois River Basin. On Page 2, he states "Data from a [USGS] report was sufficient to justify an existing total phosphorus concentration of 8.7 mg/liter for Springdale. A 10 mg/liter concentration of total phosphorus was assumed for all other facilities, based upon what is typically found in secondary treatment effluent."

In my opinion, the assumed 10 mg/liter effluent concentration is unreasonably high and serves to diminish the relative contribution of the Fayetteville discharge. Total phosphorus concentrations in secondary effluents rarely exceed 10 mg/liter. In a survey of 347 secondary treatment plants conducted by the EPA in 1972-1973, the median effluent total phosphorus concentration was 6.1 mg/liter. Median

concentrations exceeded 10 mg/liter in only 11% of the plants (USEPA,1974).

Direct monitoring of STP effluents indicate the following mean concentrations (1985-1986, STORET data):

Springdale	6.9	mg/liter
Rogers	7.3	0 1
Siloam Springs	6.0	87
Tahleguah	4.2	

These recent data (not available at the time of Mr. Champagne's calculations) indicate that 10 mg/liter is not "typical" of wastewater effluents in the basin and thus that the relative impact of the Fayetteville discharge would be greater than indicated by Mr. Champagne's calculations and pie charts.

5. Loose Linkage to Basinwide Phosphorus Controls.

Mr. Champagne also refers to "projected" reductions in phosphorus discharges from other sources in the basin (p. 2-3): "assuming (emphasis added) that the projected levels of treatment for the other discharges were implemented, the net overall effect would be the significant reduction of pollutants, including phosphorus".

It is inappropriate and risky to predicate evaluation or issuance of the Fayetteville discharge permit on assumed reductions from other point sources in the basin. As stated by Mr. Champagne (p.3.), these reductions have yet to be defined or implemented, pending outcome of the Illinois River Basin Study. In this light, this whole process of considering the Fayetteville discharge permit and its impacts on Oklahoma's water quality standards for the Illinois River is premature.

incoeque in intra en

6. No Adverse Environmental Impact.

Dr. Thompson (p.3): "In my opinion, the small amount of added phosphorus from the Fayetteville WWTP will have no adverse environmental impact."

As a result of excessive phosphorus inputs and resulting eutrophication, Oklahoma's stream standards for nutrients, dissolved oxygen, turbidity and aesthetics are violated on occasion from the state line to the river mouth under existing conditions. The river and reservoirs are already water-quality limited. Any further increases in nutrient loadings will increase the spatial and temporal violation frequencies and further impair water uses.

The added discharge from Fayetteville appears "small" only because it is being heaped on top of an excessive existing loading. Because the standards are already being violated due to excessive nutrient discharges, any increase in nutrient loading, regardless of magnitude, is unacceptable and inconsistent with fundamental water quality management policies outlined in the Clean Water Act.

Monitoring data summarized in my direct testimony clearly indicate that water quality conditions in Lake Frances, Lake Tenkiller, and the intervening river have deteriorated significantly over the past decade as a result of increased nutrient loadings. In a recent conversation with Bill Roach (an Oklahoma resident and skin diver who has owned a vacation home on the lower end of Lake Tenkiller since 1967), I obtained additional historical perspectives. Mr. Roach described the lake as "crystal clear" during the early and mid 1970's. A "marked increase in algae" occurred sometime between 1978 and 1982. Clarity has been reduced to the point where "you can't see 2 feet into the water" during critical summer periods. Mr. Roach has found that clarity is somewhat greater during the fall after peak algal growths have died off. Because of his interest in skin diving, he has adjusted his vacation schedule accordingly and now seldom visits the lake during the summer.

He also mentioned that the deterioration in water quality was accompanied by marked reductions in the log perch population. Once abundant in the lake, this exotic fish is now rarely spotted by skin divers. This account is consistent with trends in the monitoring data and demonstrates use impairment and possible ecological impacts. Addition of the Fayetteville discharge would cause further degradation.

7. Comprehensive Evaluation of Alternatives.

Mr. Champagne, in his Enclosure #2 ("A Reconsideration in Response to: Senate Report 98-506..."), describes four alternatives which were considered (pp. 3-4). Alternatives 3 and 4 (diversions to Arkansas River) were rejected because they were "not cost-effective". Land treatment options are not described.

Dr. Blanz relates that the city has gone against the recommendations of at least four highly respected environmental consulting firms before arriving at the current "cost-effective" and "ecological" solution.

The terms "cost-effective" or "not cost-effective" are only relevant to alternatives which accomplish the stated objective: compliance with water quality standards. Based upon mass balances for an average hydrologic year (Walker,1987,Table 5), phosphorus removal (1 mg/liter) from all point sources in the basin would cause a 40% reduction in loading to Lake Tenkiller. Nearly proportionate reductions in average phosphorus and algal concentrations would be expected. Figure 21 demonstrates that, even with phosphorus removal down to 1 mg/liter, Lake Frances and the river below it will still be eutrophic under low and 7-Q-2 summer flows. Oklahoma water quality standards would still be violated, although at a reduced frequency. This reflects the low dilution capacity of the watershed and nitrogen-limited condition of Lake Frances.

Based upon these considerations, schemes involving diversion of effluents out of the basin and/or land application seem to be the only alternatives which would bring the Illinois River into compliance with water quality standards. These measures deserve further consideration.

P=1,2">1/

8. 7-Day Permit Levels vs. 30-Day Permit Levels.

Mr. Leonard summarizes effluent permit conditions (Pages 2-3).

The permit specifies a maximum 7-day-average phosphorus concentration of 2 mg/liter and a maximum 30-day average concentration of 1 mg/liter. My mass balance calculations (Tables 4-7) are based upon the 30-day value. Because of the low hydraulic residence time of Lake Frances, conditions in the lake and downstream river would respond to changes in inflow concentrations on a weekly time scale. Thus, the projected increases in phosphorus concentrations due to the Fayetteville discharge could be twice those described in my testimony (Tables 4-7, Figures 21 and 23) and still be in compliance with the permit.

REFERENCES

Gakstatter, J.H. and A. Katko, "Illinois River Survey, August 16-29, 1985", Environmental Research Laboratory, U.S. Environmental Protection Agency, Duluth, Minnesota, Draft, May 1986.

Threlkeld, S.T., "Lake Frances Phase I Diagnostic/Feasibility Study", prepared for U.S. Environmental Protection Agency, Grant No. S-006284-

U.S. Environmental Protection Agency, "Nitrogen and Phosphorus in Galuation Wastewater Effluents", Working Paper No. 22, National Eutrophication Survey, Corvallis Environmental Research Laboratory, July 1974

Walker, W.W., Jr., "Empirical Methods for Predicting Eutrophication in Impoundments, Report 3: Model Refinements", prepared for Chief of Engineers, U.S. Army, USAE Waterways Experiment Station, Vicksburg, Mississippi, Technical Report E-81-9, March 1985.

Walker, W.W., Jr., "Impacts of Proposed Wastewater Diversion on Eutrophication and Related Water Quality Conditions in the Illinois River, Oklahoma", prepared for State of Oklahoma, Office of Attorney General, January 1987.

Figure 21 Predicted Impacts of Fayetteville Discharge on Nutrient, Algae, and Transparency Levels in Lake Frances

CORRECTED 20007 8/19/8

drier years. The runoff rate for water year 1981 (4 inches/yr or .1 meters/yr) has been used as an example of a dry hydrologic year. Under this condition, the Fayetteville discharge would increase the annual loadings of total phosphorus and nitrogen to Lake Frances by 6.7% and 18.0%, respectively, vs. 4.7% and 8.2% under average flows. Total phosphorus and nitrogen loadings to Tenkiller Ferry Reservoir would increase by 4.3% and 10.4%, respectively, during a dry year and by 2.8% and 4.3% during an average year. Regardless of their precise magnitudes, these increases are unacceptable in view of the fact that Oklahoma's water quality standards are already being violated due to excessive nutrient enrichment.

Table 8 compares loading estimates under existing conditions with estimates developed previously based upon 1974-1975 monitoring data collected by the EPA National Eutrophication Survey (1977a,b). The ' EPA/NES calculated loadings to Lake Frances and to Tenkiller Ferry for an "average hydrologic year" (basin runoff=.3 m/yr). Using the same EPA/NES data set, Walker(1982) calculated loadings to Tenkiller Ferry for 1974-1975, when runoff was relatively high (.6 m/yr). The loading estimates for existing conditions in Table 8 are based upon the same methodology employed in Tables 5-7, with runoff rates adjusted in each case to conform to the 1974-1975 estimates. The comparisons indicate 6-21% increases in nitrogen loading, as compared with 96-135% increases in phosphorus loading over this period. These results are generally consistent with the observed increased eutrophication in the reservoir and river segments discussed previously and further suggest that point sources have been primarily responsible for these increases.

CONCLUSIONS: IMPACTS OF DIVERSION ON OKLAHOMA WATER QUALITY STANDARDS

The addition of nutrient loadings from Fayetteville would cause increases in nutrient and algal concentrations in Lake Frances, the Scenic River below Lake Frances, and in Tenkiller Ferry Reservoir. The monitoring data reviewed above indicate that these segments are already severely impacted by nutrient loadings from the upper watershed. The

405-521-3921

Miles. 405 - 321-3895