Quantifying Variability & Uncertainty in Phosphorus TMDL's for Lakes

Reservoirs Too!

William W. Walker, Jr., Ph.D. Environmental Engineer Concord, Massachusetts wwwalker.net

North American Lake Management Society

Madison, Wisconsin

November 8, 2001

Quantifying Variability & Uncertainty Benefits

Estimates Probability of Achieving Goal

Provides Rational Basis for MOS

Helps to Define Lake Goal Numerical Value "Target" or "Limit"? Spatial & Temporal Averaging Compliance Rate (% of Years Achieving Goal)

Identifies Important Sources of Uncertainty

Provides Incentive for Continued Data Collection & Modeling More Data --?-> Lower MOS --?--> Higher Load Alloc

Quantifying Variability & Uncertainty Difficulties

Limited Guidance Provided in TMDL Regulations

Frequency Concepts Rarely Built into WQ Standards

Load Allocations Sensitive to Assumptions:

Compliance Rate (e.g., % of yrs <= target)

Confidence Level (~probability of success)

Uncertainty/Variability Costs (MOS) Can Be Large

Can Backfire & Retard Restoration Efforts

Technical Complexity

Uncertainty Estimates are Uncertain

Algal Bloom Frequency vs. Total Phosphorus

Bloom Frequencies from daily samples at Vadnais Intake & Pleasant Gatehouse Total Phosphorus concentrations measured in Lake Epilimnion (0-6 m) April-September Means for Each Year

Derivation of Phosphorus Target for Upper Klamath Lake for Compliance with pH Standard

Alternative Interpretations of a 20 ppb Lake P Goal

Year

Case 2: Yearly Mean < 20 ppb in 90% of Years Long-Term Mean = 15.5 ppb TMDL = 77 kg/yr

Year

TMDL Equations Long-Term-Average Mass Balances

Watershed Mass Balance:

TMDL =	SLAS -	SWLAS +	Background	+ MOS
Total Maximum Daily Load	Non-Point Sources	Point Sources	Natural or Unregulated	Margin of Safety
Ţ	Anthropogenic	< Discharge Permit	Undev. Watershed Atmospheric	uncertainty variability

<--- Expected Long-Term-Average Load to Lake --->

Lake Mass Balance:

 $TMDL = Q_S P^* + U P^*$

Input Flushing Net Retention

Consideration of Point-Source Variability

Month

Arith Mean10Long-Term Average Load Used in TMDL Mass BalancePermit Limit14Permit Value not to be Exceeded in >5% of MonthsModel: Log-Normal Distribution with CV =0.2

MOS Alternatives

Conservative Water Quality Criteria/Standard

Conservative Phosphorus Goal

Conservative Modeling Assumptions

Conservative Effluent Limits / Discharge Permits

Conservative Facility Designs

Conservative Growth Projections

Shell Game

Modeling Variability & Uncertainty Stochastic Approach

Predicted Long-Term-Average Lake P Conc:

$$P_{M} = L_{M} / (U + Q_{S})$$

Accounting for Uncertainty:

$$P_{MU} = P_{M} \exp(d_{u})$$

$$d_{u} = random \ error \ term, \ mean = 0, \ std \ dev = s_{u}$$

$$s_{u} \sim 0.1 - 0.5$$

Accounting for Uncertainty & Variability:

 $P_{MUY} = P_M \exp(d_u + d_y)$ $d_y = random yr-to-yr variation, mean = 0, std dev = s_y$ $s_y \sim 0.1 - 0.3$

TMDL Calculation Spreadsheet

<u>Variable</u>	<u>Units</u>	<u>Value</u>	Equation	Notes
Input Values:				
Existing Load	mg/m²-yr	1000	Lo	long-term-average load
Net Settling Rate	m/yr	10	U	from model calibration
Water Load	m/yr	10	Qs	outflow / surface area
Target Lake P	ppb	25	P*	for compliance with wq standards
Confidence Level	%	90%	p1	= 100 - max risk of not achieving objective
Compliance Frequency	%	80%	p2	expected percent of years achieving target
Model Error Std Dev	-	0.3	Su	accounts for modelling uncertainty
Year-to-Year Std Dev	-	0.1	Sy	accounts for temporal variability in lake p
Output Values:				
Normal Deviate (p1)		1.282	Zu = Normal (1-p1)	normal deviate with tail probability 1-p1
Uncertainty Factor		0.681	Fu = exp(- Zu Su)	
Normal Deviate (p2)		0.842	Zy = Normal (1-p2)	normal deviate with tail probability 1-p2
Variability Factor		0.919	Fy = exp(-Zy Sy)	
MOU Fraction		0.8	f = (1 - Fu) / (2 - Fu - Fy)	fraction of MOS assigned to MOU
TMDL	mg/m²-yr	500	TMDL = (Qs + U) P*	
Allocated Load	mg/m ² -yr	313	La = TMDL Fu Fy	long-term-average allocated load
Margin of Safety	mg/m ² -yr	187	MOS = TMDL - La	or $MOS = MOU + MOV$
Margin of Uncertainty	mg/m ² -yr	149	MOU = f MOS	portion of MOS attributed to uncertainty
Margin of Variability	mg/m²-yr	38	MOV = MOS - MOU	portion of MOS attributed to variability
Uncertainty Cost		30%	MOU / TMDL	MOU as fraction of TMDL
Variability Cost		8%	MOV / TMDL	MOV as fraction of TMDL
Required Load Reduction	1	69%	1 - La / Lo	

TMDL Sensitivity to Compliance Frequency & Confidence Level

Lake P Target	LT-Avg	<u>LT-Avg</u>	<u>10-Yr Max</u>	<u>10-Yr Max</u>
Uncertainty Considered	No	Yes	No	Yes
Variability Considered	No	No	Yes	Yes
Confidence Level>MOU	50%	90%	50%	90%
Compliance Freq> MOV	50%	50%	90%	90%
Model Error Std Dev	0.4	0.4	0.4	0.4
Temporal Std Dev	0.2	0.2	0.2	0.2
Allocated LTA Load	500	299	387	232
Load Reduction	29%	57%	45%	67%

TMDL Sensitivity to Model Uncertainty

	Increasing Model Uncertainty>				
Model Error Std Dev	0.0	0.1	0.2	0.4	
Temporal Std Dev	0.2	0.2	0.2	0.2	
Allocated LTA Load	387	340	299	232	
Load Reduction	45%	51%	57%	67%	
Uncertainty Cost	0%	11%	20%	34%	

TMDL Allocations for Confidence Level = 90%, Compliance Freq = 90%

Figure 29 Confidence Intervals for TMDL's Compared with Historical Phosphorus Loads

Historical Loads -----> W

Water-Column Models ----->

Sediment & Water Column Models ----->

Iterative TMDL Process

Phased Approach to T M D L Implementation

Confidence Level	50%	90%		90%
Compliance Freq	50%	90%	Uncertainty Reduction	90%
Model Error Std Dev	0.4	0.4 —		0.1
Temporal Std Dev	0.2	0.2		0.2
Allocated Load	500	232		340
Cum Load Reduction	50%	77%		66%