# DESIGN CALCULATIONS FOR WET DETENTION PONDS 

prepared for<br>St. Paul Water Utility<br>and<br>Vadnais Lake Area Water Management Organization

by

William W. Walker, Jr., Ph.D. / Environmental Engineer 1127 Lowell Road / Concord, MA 01742 / 617-369-8061

October 1987

## 1. INTRODUCTION

This document is intended to assist engineers and planners in sizing wet detention ponds for reducing water quality impacts of urban runoff. The design criteria described below have been derived from the EPA's Nationwide Urban Runoff Program (NURP) and adopted by the Vadnais Lake Area Water Management Organization (VLAWMO) for application to future urban developments in the Vadnais Lake watershed. Based upon NURP and other monitoring studies, ponds designed according to these guidelines should have pollutant removal efficiencies similar to those shown in Figure 1. The calculations focus on sizing and shaping the permanent pool, which is necessary for water quality control purposes. Hydraulic design of outlet structures and sizing of temporary flood storage to limit peak discharge rate are not discussed.

Figure 1
TYPICAL WET DETENTION POND PERFORMANCE


Figure 2


As illustrated in Figure 2, a triangular basin shape is preferred for wet detention ponds. Three elevation contours are defined:
$C=$ top of permanent pool
$B=$ aquatic bench (for safety and aquatic plant habitat)
$A=$ pond bottom
Three congruent triangles are used to define contour shapes.
Pond dimensions calculated according to the following procedure are intended to provide approximate guidelines for final designs, which should also consider local topographic features. Generally, adherence to calculated shapes will be more feasible for ponds which are excavated, as compared with those which are created in natural depressions. Permanent pool volume is the most important design parameter influencing pollutant removal efficiency. Accordingly, volume constraints should apply to all designs.

For design purposes, the elevation of the lowest surface outlet determines the top of the permanent pool ( $C$ contour). Actual water levels may occasionally drop below this level because of infiltration and/or evaporation between storm events, particularly in areas with permeable soils. Such behavior would tend to improve overall pollutant removal efficiency, but may pose aesthetic problems.

The following design criteria are included in the VLAWMO Watershed Management Plan. They are listed in order of importance with respect to impact on expected pollutant removal efficiency:
(1) The permanent pool is important because it provides storage and treatment of runoff during and between storm events. Permanent pool volume should be greater than or equal to the volume of runoff from a 2.5-inch rainstorm under full projected watershed development. This value has been derived from design criteria developed under NURP, with a $25 \%$ increase in volume to allow for roughly 25 years of sediment accumulation. In the summer, St. Paul climate, this sizing rule provides a mean hydraulic residence time of about 15 days.
(2) To promote settling and provide space for sediment accumulation, the mean depth of the permanent pool (volume/surface area) should be greater than or equal to 4 feet. This constraint may be infeasible for small ponds (< approx. 3 acre-feet in volume, see below), where mean depths of $3-4$ feet may be used.
(3) To prevent development of thermal stratification, loss of oxygen, and nutrient recycling from bottom sediments, the maximum depth of the permanent pool should be less than or equal to 10 feet.
(4) To promote plug flow behavior, the ratio of maximum length to maximum width $\left(L_{c} / W_{C}\right)$ should be greater than or equal to 3. Expected performance is less sensitive to the length/width ratio than to volume or depth. This constraint may be infeasible for some site plans or for small ponds. In such situations, baffles may be installed to isolate the inflow area from the remainder of the pond. A desirable alternative (for all pond sizes) is to construct two or more separate ponds in series with a total volume equal to that specified above (1) (see Section 10).
(5) For safety purposes and to provide suitable habitat for rooted aquatic plants, the bench width (minimum distance between the $B$ and $C$ contours) should be at least 10 feet and the bench slope should not be steeper than 10:1 (horizontal:vertical).
(6) To provide stability, the side slopes (between A and B contours) should not be steeper than 3 feet horizontal to 1 foot vertical. Shallower slopes may be appropriate, depending upon soil engineering properties. Shallower slopes are more feasible for larger ponds.

Other design features include provision of a shoreline buffer zone and access for maintenance. Calculations for sizing and shaping ponds according to these rules are described below.

## 2. CALCULATE PERMANENT POOL VOLUME

The permanent pool volume is calculated to equal expected runoff from a 2.5 -inch rainstorm under full watershed development. The calculation is based upon the SCS soil cover complex method; impervious and pervious portions of the watershed are treated separately. The impervious portion should include all impervious surfaces draining to stormwater conveyors (storm sewers, street gutters, and stream channels). Rooftops draining to lawns or other pervious surfaces should be included in the pervious portion of the watershed with a curve number of 98 . Table 1 lists recommended curve numbers for typical soil types and cover complexes.

Specify Watershed Characteristics:
$A_{w}=$ total watershed area (acres)
$F_{i}=$ impervious fraction
$C N=$ area-weighted-mean SCS curve number for pervious portion of watershed (based upon soil hydrologic group and coil cover, from SCS manuals)
$P=$ design storm size $=2.5$ inches (VLAWMO/NURP criterion)
Calculate maximum soil retention $=S$ (inches):

$$
S=1000 / C N-10
$$

Calculate runoff for design storm $=R$ (inches):

$$
R=P F_{i}+\frac{(P-.2 S)^{2}}{P+.8 S}\left(1-F_{i}\right)
$$

Calculate permanent pool volume $=V$ (acre-feet)

$$
V=R A_{W} / 12
$$

Graphic solutions of equations for $R$ and $V$ are illustrated in Figures 3 and 4 , respectively.

$$
-5-
$$

Table 1
Curve Numbers for Various Soil Types and Cover


Figure 3
Calculation of Runoff from Design Storm

RUNOFF FROM 2.5 IN STORM (IN)


Figure 4
Calculation of Permanent Pool Volume


## 3. SPECIFY POND DESIGN CONSTRAINTS

For reasons stated above, the following constraints apply to pond dimensions (see Figure 2):

| perm. pool volume | $=\mathrm{V}$ | calc. above, (acre-ft) |
| :--- | :--- | :--- |
| mean depth | $=\mathrm{Z}$ | $>=4 \mathrm{ft}$ |
| maximum depth | $=\mathrm{Z}_{\mathrm{max}}$ | $<=10 \mathrm{ft}$ |
| bench slope | $=\mathrm{S}_{\mathrm{bc}}$ | $>=10 \mathrm{ft} / \mathrm{ft}$ |
| bench width | $=\mathrm{D}_{\mathrm{bc}}$ | $>=10 \mathrm{ft}$ |
| side slope | $=\mathrm{S}_{\mathrm{ab}}$ | $>=3 \mathrm{ft} / \mathrm{ft}$ |
| surface elevation | $=\mathrm{E}_{\mathrm{c}}$ | $=0 \mathrm{ft}$ (arbitrary ref.) |

Analytical solutions for pond dimensions satisfying the above constraints are cumbersome. Given these constraints and the geometry shown in Figure 2, all pond dimensions are fixed once a length/width ratio ( $K$ ) and top length ( $L_{c}$ ) have been selected. Accordingly, a trial-and-error procedure is employed to find $K$ and $L_{c}$ values which satisfy total volume and depth requirements. Three methods for performing these calculations are presented (manual, tabular, computer spreadsheet). The algorithm employed in each of these methods is described below.

## 4. SELECT TRIAL DIMENSIONS

Trial values for length/width ratio and top length are selected by the designer:

$$
\begin{array}{lll}
\text { length/width ratio } & =\mathrm{K} & >=3 \\
\text { top length } & =\mathrm{L}_{\mathrm{c}} &
\end{array}
$$

Initial values of $L_{c}$ and $K$ may be estimated from Figure 5. For a given pool volume (Y-axis) and mean depth (dashed lines), Figure 5 permits estimation of top length ( $L_{c}, X$-axis) and length/width ratio (K, dashed lines) for ponds adhering to above constraints (Section 3.). Site topographic features can also be considered in selecting initial values for $L_{c}$ and K. As indicated in Figure 5, length/width ratios less than 3 and/or mean depths less than 4 feet will be necessary for small ponds (approx. less than 3 acre-feet total volume).

## 5. CALCULATE POND DIMENSIONS

Once trial $K$ and $L_{c}$ values have been selected, other pond dimensions can be calculated as described below:

C contour

| width | $=W_{c}=L_{c} / \mathrm{K}$ |
| :--- | :--- |
| area | $=A_{c}=W_{c} L_{c} / 2$ |

B contour

$$
\begin{aligned}
& \text { ** } \\
& \text { length } \quad=L_{b}=L_{c}-D_{b c}\left[1+\left(1+4 K^{2}\right) \cdot 5\right] \\
& \text { width } \quad=W_{b}=L_{b} / K \\
& \text { area } \quad=A_{b}=W_{b} L_{b} / 2 \\
& \text { elevation }=E_{b}=E_{c}-D_{b c} / S_{b c} \\
& \text { A contour } \\
& * * \\
& \text { slope length }=D_{a b}=\left(Z_{\max }-E_{c}+E_{b}\right) S_{a b} \\
& \text { length } \quad=L_{a}=L_{b}-D_{a b}\left[1+\left(1+4 K^{2}\right) \cdot 5\right] \\
& \text { width } \quad=W_{a}=L_{a} / K \\
& \text { area } \quad=A_{a}=W_{a} L_{a} / 2 \\
& \text { elevation } \quad=E_{a}=E_{c}-Z_{\max }
\end{aligned}
$$

Volumes

$$
\begin{array}{ll}
\mathrm{BC} \text { volume } & =V_{b c}=\left(E_{c}-E_{b}\right)\left[A_{c}+A_{b}+\left(A_{b} * A_{c}\right) \cdot 5\right] / 3 \\
A B \text { volume } & =V_{a b}=\left(E_{b}-E_{a}\right)\left[A_{b}+A_{a}+\left(A_{b} * A_{a}\right) \cdot 5\right] / 3 \\
\text { total } & =V_{a c}=V_{a b}+V_{b c} \quad\left(f t^{3}\right) \\
\text { volume } & =V_{*}=V_{a c} / 43560 \\
\text { mean depth } & =Z_{*}=V_{a c} / A_{c} \tag{ft}
\end{array}
$$

** If calculated $L_{a}$ or $L_{b}$ values are less than zero, design constraints are infeasible. Return to Step 4 and adjust $K$ downward and/or $L_{c}$ upward. Maximum depth ( $\mathrm{Z}_{\max }$ ) may also be reduced.

Figure 5
Numeric Solution
Volume, Top Length, Length/Width, and Mean Depth

## 6. TEST RESULTS

The final step is to determine whether the total volume and mean depth calculated above satisfy the design requirements.

If ( $\mathrm{V}_{*}$ approx. $\left.=\mathrm{V}\right)$ and ( $\mathrm{Z}_{*}>=\mathrm{Z}$ ) quit. Otherwise, return to Step 4 and adjust trial values of $\mathrm{L}_{\mathrm{c}}$ and/or K . To increase pool volume, adjust $\mathrm{L}_{\mathrm{c}}$ upward and/or K downward.

Strict adherence to the triangular geometry will be rarely feasible in final engineering designs. Final contours should be checked for adherence to volume and mean depth constraints. The equations used above for calculating volume increments ( $\mathrm{V}_{\mathrm{ab}}, \mathrm{V}_{\mathrm{bc}}$ ) are also applicable to irregular contours. The required areas ( $A_{a}, A_{b}, A_{c}$ ) can be estimated from contour maps by planimetry.

## 7. LOOKUP TABLE

To facilitate applications, solutions to the above equations are listed in Table 2 for the design constraints listed in Section 3. The table lists contour dimensions, mean depths, pool volumes, and pool surface areas for ponds with length/width ratios (K) between 1 and 8 and top lengths ( $\mathrm{L}_{\mathrm{c}}$ ) between 125 and 1200 feet. To apply this table, first calculate the required permanent pool volume (V), based upon watershed characteristics. Search the table for a pond which provides this volume, preferably at a high length/width ratio ( $>3$ ) and mean depth $>=4$ feet. Interpolate between rows to find dimensions which correspond to desired design volume.

## 8. SPREADSHEET

A LOTUS-123 (Version 2.0) spreadsheet (PONDSIZ.WK1) has been written to implement the above calculations (Table 3). The user inputs 10 watershed variables and pond design constraints. The program calculates contour dimensions, areas, and pond volume. Graphic output illustrating contour shapes is also generated (Figure 6). The spreadsheet greatly facilitates the iterative calculations required to meet design volume requirements but adjusting top length and/or length/width ratio.

A floppy disk containing the spreadsheet has been provided. Table 4 lists the equations involved (minus graphics), for those interested in entering the equations into a different spreadsheet program.

Table 2
Lookup Table of Alternative Pond Designs


Table 3
PONDSIZ.WKI Spreadsheet

| detiention pond design | W. HALKER |  | PRESS 'ALT-G' for graphs user input area |
| :---: | :---: | :---: | :---: |
| InPut variable: | UNITS | InPuTS | NOTES |
| Watershed Area | acres | 30 |  |
| Pervious Curve Number | - | 80 | (scs soil cover complex) |
| Impervious fraction | - | 0.2 |  |
| Design Storm | inches | 2.5 | (= 2.5 in, VLAWMO criterion) |
| Maximum Depth | feet | 10 | $<=10 \mathrm{ft}$ |
| Bench Hidth bc | feet | 10 | $>=10 \mathrm{ft}$ |
| Bench Slope be | ft/ft | 10 | $>=10 \mathrm{ft}$ horiz / ft vertical |
| Side Slope ab | $f t / f t$ | 3 | $>=3 \mathrm{ft}$ horiz / ft vertical |
| Length/Width Ratio | - | 3 | $>=3$ |
| Top Length c | feet | 430 | (adjust to achieve volume) |
| OUTPUT VARIABLE: | UNITS | value |  |
| Target Volume | acre-ft | 3.027777 | ( $=$ design storm runoff volume) |
| Design Volume | acre-ft | 3.094183 | (should be $>=$ target volume) |
| Design Mean Depth | feet | 4.373692 | (should be >= 4 feet) |
| Maximum Retention | inches | 2.5 |  |
| Design Storm Runoff | inches | 1.211111 |  |
| Permanent Pool volume | acre-ft | 3.027777 |  |
| TOP CONTOUR - c |  |  |  |
| Length c | feet | 430 |  |
| Width c | feet | 143.3333 |  |
| Area c | feet^2 | 30816.66 |  |
| BENCH COUNTOUR - b |  |  |  |
| Depth b | feet | 1 |  |
| Length b | feet | 359.1723 |  |
| Width b | feet | 119.7241 |  |
| Elevation b | feet | -1 |  |
| Area b | feet^2 | 21500.79 |  |
| BOTTOM CONTOUR - a |  |  |  |
| Elevation a | feet | -10 |  |
| Slope Length ab | feet | 27 |  |
| Length a | feet | 167.9377 |  |
| Width a | feet | 55.97926 |  |
| Area a | feet^2 | 4700.516 |  |
| Volume bc | feet^3 | 26019.38 |  |
| Volume ab | feet^3 | 108763.2 |  |
| Volume ac | feet^3 | 134782.6 |  |
| Pond Volume | acre-ft | 3.094183 |  |
| Mean Depth | feet | 4.373692 |  |
| Pond Area | acres | 0.707453 |  |

Figure 6
Sample Graphic Output from PONDSIZ.WK1 Spreadsheet

PLAN VIEW




Table 4
PONDSIZ.WK1 Spreadsheet Equations

|  | InPut variable: | UNITS | INPUTS |
| :---: | :---: | :---: | :---: |
| 3 | Watershed Area | acres | 30 |
| 4 | Pervious Curve Number | - | 80 |
| 5 | Impervious fraction | - | 0.2 |
| 6 | Design Storm | inches | 2.5 |
| 7 |  |  |  |
| 8 | Maximum Depth | feet | 10 |
| 9 | Bench Width bc | feet | 10 |
| 10 | Bench slope bc | $\mathrm{ft} / \mathrm{ft}$ | 10 |
| 11 | side slope ab | $\mathrm{ft} / \mathrm{ft}$ | 3 |
| 12 |  |  |  |
| 13 | Length/Width Ratio | - | 3 |
| 14 | Top Length c | feet | 430 |
| 15 |  |  |  |
| 16 | OUTPUt Variable: | UNITS | value |
| 17 | Target Volume | acre-ft | +D24 |
| 18 | Design volume | acre-ft | DIF (D33>0\#AND\#D41>0, D49,0) |
| 19 |  |  |  |
| 20 | Design Mean Depth | feet |  |
| 21 |  |  |  |
| 22 | Maximum Retention | inches | 1000/04-10 |
| 23 | Design Storm Runoff | inches | +D6*D5+(1-D5)*(D6-0.2*D22)^2/(D6+0.8*D22) |
| 24 | Permanent Pool Volume | acre-ft | +023*D3/12 |
| 25 |  |  |  |
| 26 TOP CONTOUR - c |  |  |  |
| 27 | Length c | feet | +014 |
| 28 | Width C | feet | +027/013 |
| 29 | Area $C$ | feet^2 | +027*D28/2 |
| 30 |  |  |  |
| 31 BENCH COUNTOUR - b |  |  |  |
| 32 | Depth b | feet | +D9/010 |
| 33 | Length b | feet | +D27-D9*(1+@SORT(1+4*D13^2)) |
| 34 | Width b | feet | +D33/D13 |
| 35 | Elevation b | feet | -032 |
| 36 | Area b | feet^2 | +D33*D34/2 |
| 37 |  |  |  |
| 38 Bottom Contour - a |  |  |  |
| 39 | Elevation a | feet | -08 |
| 40 | Slope Length ab | feet | (D35-D39)*D11 |
| 41 | Length a | feet | +D33-D40* ( $1+$ OSQRT ( $1+4 *$ D13^2) ) |
|  | Width a | feet | +041/D13 |
| 43 | Area a | feet^2 | +D41*D42/2 |
| 44 |  |  |  |
|  | Volume bc | feet^3 | +032*(036+029+2SQRT(036*D29))/3 |
| 46 | Volume ab | feet^3 | (D35-D39)*(D43+036+@SQRT(D43*D36))/3 |
| 47 | volume ac | feet^3 | +045+046 |
| 48 |  |  |  |
| 49 | Pond volume | acre-ft | +D47/43560 |
| 50 | Mean Depth | feet | +047/029 |
|  | Pond Area | acres | +049/050 |

## 9. SAMPLE CALCULATION

The following illustrates pond design calculations for an urban development with the following characteristics:

| Subwatershed |  | Area (acres) |
| :--- | :--- | :---: |
| 1 Lawns - Soil Group C - Fair Hydrol. Cond. | 17.7 |  |
| 2 Lawns - Soil Group B - Fair Hydrol. Cond. | 3.3 |  |
| 3 Rooftops draining to lawns | 3.0 |  |
| 4 Other Impervious Surfaces | 6.0 |  |
| Total | 30.0 |  |


| Calculate mean curve number for pervious subwatersheds: Table 1 |  |  |  |
| :---: | :---: | :---: | :---: |
| Subwatershed | Area | Curve No. | Product |
| 1 | 17.7 | 79 | 1398 |
| 2 | 3.3 | 69 | 228 |
| 3 | 3.0 | 98 | 294 |
| Total | 24.0 |  | 1920 |
| Weighted-mean curve number $=1920 / 24=80$ |  |  |  |
| Maximum retention $=S=1000 / 80-10=2.5$ inches |  |  |  |
| Impervious Watershed Fraction $=\mathrm{F}_{\mathbf{i}}=6 / 30=.2$ |  |  |  |
| Design Storm Runoff $=$ R (inches) = |  |  |  |
| $=2.5 \times .2+(2.5-.2 \times 2.5)^{2} \mathrm{x}(1-.2) /(2.5+.8 \times 2.5)$ |  |  |  |
| $=.50+$. | - 1.2 | inches (se |  |

Pool Volume $=V(a c-f t)=1.21 \times 30 / 12=3.02 \mathrm{ac}-\mathrm{ft}$ (Fig. 4)
Assume design constraints listed in Section 3.
For length/width ratio $=3.0$, top length of 430 feet should provide required volume and mean depth $>4$ feet (Fig. 5).

Calculate remaining pond dimensions (Section 5):

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{c}}=430 / 3=143.3 \mathrm{ft} \\
& \mathrm{~A}_{\mathrm{c}}=143.3 \times 430 / 2=30,817 \mathrm{ft}^{2} \\
& \mathrm{~L}_{\mathrm{b}}=430-10 \times\left(1+\left(1+4 \times 3^{2}\right) \cdot 5\right)=359.2 \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{b}}=359.2 / 3=119.7 \mathrm{ft} \\
& \mathrm{~A}_{\mathrm{b}}=119.7 \times 359.2 / 2=21,504 \mathrm{ft}^{2} \\
& \mathrm{E}_{\mathrm{b}}=0-10 / 10=-1 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{ab}}=(10-0+1) \times 3=27 \mathrm{ft} \\
& \mathrm{~L}_{\mathrm{a}}=359.2-27 \times\left(1+\left(1+4 \times 3^{2}\right) .5\right)=167.9 \mathrm{ft} \\
& \mathrm{~W}_{\mathrm{a}}=167.9 / 3=56.0 \mathrm{ft} \\
& \mathrm{~A}_{\mathrm{a}}=56 \times 167.9 / 2=4701 \mathrm{ft}^{2} \\
& \mathrm{E}_{\mathrm{a}}=0-10=-10 \mathrm{ft}
\end{aligned}
$$

## Calculate volume increments:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{bc}} & =(0+1) \times(30817+21504+(30817 \times 21504) \cdot 5) / 3 \\
& =26,020 \mathrm{ft}^{3} \\
\mathrm{~V}_{\mathrm{ab}} & =(-1+10) \times(21504+4701+(21504 \times 4701) \cdot 5) / 3 \\
& =108,778 \mathrm{ft}^{3} \\
\mathrm{~V}_{\mathrm{ac}} & =26,020+108,778=134,789 \mathrm{ft}^{3} \\
\mathrm{~V}_{*} & =3.09 \text { acre }-\mathrm{ft} \\
\mathrm{Z}_{*} & =134,789 / 30,817=4.37 \mathrm{ft}
\end{aligned}
$$

Test results (Section 6):
Design Volume $=3.09 \mathrm{ac}-\mathrm{ft}>$ Target Volume $=3.02 \mathrm{ac}-\mathrm{ft}$
Design Mean Depth $=4.37 \mathrm{ft}>4 \mathrm{ft}$
Design requirements are met.
Spreadsheet outputs for this case are shown in Table 3 and Figure 6.
A length/width ratio of 4 and top length of 510 feet would also satisfy design requirements.

## 10. STAGED DESIGNS

Detention ponds and wetlands can be placed in series, as illustrated in Figure 7. Staged designs offer a number of advantages over single cell designs, in terms of pollutant removal efficiency, longevity, and ease of maintenance. Basic elements include the following:

## Upstream Pond: "Primary Treatment".

Coarse particulate materials (usually most of total sediment volume) are removed. This protects the downstream ponds and wetlands from erosion and rapid sediment accumulation. First pond can be dredged with minimal disruption to biological communities in downstream ponds and wetlands.

Downstream Pond: "Secondary Treatment".
Medium and some fine particulate materials are removed via sedimentation. A pond-like biological community is established to assist in removal of soluble pollutants. This pond provides most of the permanent pool volume and hydraulic residence time required for runoff treatment.

## Wetland Cell(s): "Tertiary Treatment".

For final "polishing", flow passes through a natural or artificial wetland at controlled rates. Filtration, uptake, adsorption, and decay mechanisms operate in wetland organic soils, plant communities, and attached growths. Maintenance of sheet flow (vs. channelized flow) through the wetland is important to promote water contact with vegetation and soils. The wetland is protected from sediment accumulation and erosion by upstream detention ponds.

To provide adequate residence time, the total permanent pool volumes in the upstream and downstream ponds can be based upon the sizing rule discussed in Section 2. Roughly two thirds of the total volume should be contained in the downstream pond. To prevent back-mixing, permanent pool and flood pool elevations should step down from one pond to the next. In a staged design, performance is very insensitive to pond shape (length/width ratio), provided that inlets and outlets are not adjacent. For typical runoff characteristics, model results (Walker,1986), indicate that a two-cell design (upstream and downstream pond) increases average phosphorus removal efficiency from about 60 to $70 \%$, as compared with a one-cell design with the same total permanent pool volume. Additional phosphorus removal would expected in downstream wetland cells, if also included in a staged design.

Figure 7


## 11. REFERENCES

The following publications provide additional useful information on detention basin design and performance:

Athayde, D.N., P.E. Shelly, E.D. Driscoll, D. Gaboury, and G. Boyd, "Results of the Nationwide Urban Runoff Program: Volume I - Final Report", Water Planning Division, U.S. Environmental Protection Agency, NTIS PB84-185552, December 1983.

Chan, E., T.A. Bursztynsky, N. Hantzche, and Y.J. Litwin, "The Use of Wetlands for Water Pollution Control", prepared for Municipal Environmental Research Laboratory, U.S.E.P.A., Cincinnati, Ohio, EPA-600/2-82-036, September 1982.

Oberts, G., "Surface Water Management - Evaluation of the Nationwide Urban Runoff Program", Metropolitan Council of the Twin Cities Area, Publication No. 10-83-127, December 1983.

Schueler, T., "Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMP's", Metropolitan Washington Council of Govermments, Department of Environmental Programs, 1875 Eye St., NW, Suit 200, Washington, DC 20006, (price: \$40.00), July 1987.

Urbonas, B. and L.A. Roesner, eds., Urban Runoff Quality, Its Impacts and Quality Enhancement Technology, Proceedings of Engineering Foundation Conference, Henniker, New Hampshire, June 22-27, 1986, published by American Society of Civil Engineers, 345 East 47th Street, New York, New York 100172398, 1986.
U.S. Environmental Protection Agency, "Methodology for Analysis of Detention Basins for Control of Urban Runoff Quality", Office of Water, Nonpoint Source Branch, Washington DC 20460, EPA440/5-87-001, September 1986.

Walker, W.W., "Phosphorus Removal by Urban Runoff Detention Basins", in "Lake and Reservoir Management", Proceedings of Sixth Annual Conference, North American Lake Management Society, Portland, Oregon, 1987.

